$\nabla T \equiv X$

Analysis Tools for Electron and X-ray diffraction

Textures Simulation – Crystal Plasticity

Benoît Beausir & Jean-Jacques Fundenberger

University of Lorraine, Metz, France

www.atex-software.eu www.atex-software.eu/help.html Youtube channel "atex software"

ATEX is free for non-commercial use.

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

Content

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements
 - 3. Orientations Maps (EBSD)
- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- 4. Simulations On Orientations Maps

3

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

Content

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements
 - 3. Orientations Maps (EBSD)
- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- 4. Simulations On Orientations Maps

- 1. Open ATEX
- 2. Click on the "Simulations" button
- 3. Select "Creator" module
- 4. Select the "Textures" tab

∧T∃X - Data Creator	$\odot \odot \otimes$
Microstructures Texture	
Texture Generator	
Lattice parameters	
a: 0.40494 b: 0.40494 c: 0.40494 Space Group: 225	
Choose Phasis α: 90 β: 90 γ: 90 Name: Aluminum	
✓ Single Orientations	
Single Orientations	
#Orient.: φ1 45 o	
2 🗘 φ ο 45	
φ2 <u>ο ο</u>	
spread 10 10	
✓ Fibres	
Fibres	
#Fibre: XC YC ZC p/d XS YS ZS p/d start end spread Nb Or.	
1	л
p/d : plan	
or direction	
✓ Random ✓ Create also an ASCII file ((*.smt)
Random Texture	
Nh of Orientations: 100 🗧	
	κ.

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

 \rightarrow Generate textures

- 1. Define the material by clicking on "Choose Phases" button to open the phases definition window
- 2. Select "Aluminium" for instance
- 3. Click on apply button to validate.

The lattice parameters, the space group and the name of the phase appears in the data creator window

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

6

 \rightarrow Generate textures

1. Now choose the kind of orientations you want to add to

- your texture
- Single Orient.
- Fibre
- Random
- 2. You can also mix them
- 3. Click on the generate button

An *.orli.atex file will be created (ORLI meaning ORientation List)

note that if the checkbox "Create ASCII..." is checked you will also get the orientation list in a text format file

4. ATEX will ask you if you want to open your generated texture to plot it for instance, answer YES"

TUTORIAL Textures Simulation – Crystal Plasticity

→ Generate textures

→ Generate textures

1. Once you said "YES" the ORLI module opens.

> Here the texture is composed by two orientation (0,0,0) and (45,0,0) with the same weight

2. Click on "pole figures" button to plot it

> The (111) pole figures shows the projection of the four equivalents planes (111) of each orientation (0,0,0) in green, (45,0,0) in orange

3. YOU NOW HAVE AN ORIENTATION LIST READY FOR THE SIMULATIONS

8

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements
 - 3. Orientations Maps (EBSD)
- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- 4. Simulations On Orientations Maps

→ Orientation list from X-Ray measurements

- 1. Select Import data tab, then click on "XRD-PF" button
- 2. Select your manufacturer
- 3. Select then the kind of data file format
- 4. Fill the missing information if needed (depending on the manufacturer file)
- 5. Click on "Create ATEX file" button
- 6. You will get a ".xipf.atex" file

XIPF meaning Xray Incomplete Pole Figures

T E X © Software (2018) source codes and documentations are copyrighted. All Rights Reserved. (IDDN.FR.001.420015.000.R.P.2014.000.20700).

∧τ≡x	(- XR/	AY Po	le Figu	ires Impo	orts								\odot \otimes
LEI			· * (*		PANalytical	SEIFEF Analytical X	ET BRUKER	Ras Mat	LaboTex	KU LEUVEN	φ, χ	@ Rigaku	B
File For FP2	mat •		Load	Data	Real Contraction of the second	\							U
			0.40 90	5 b: β:	0.405 c: 90 γ:	0.405 90	Edit Phase				Phi i		
							Collimator Height (mm)	Collimator Width (mm)	Detector Height (mm)	Detector Width (mm)		Bgd 2T	7
▶ 1	1	1	1	2/5	50.93	25.47	0.8	0.8	6.9	12.09404	0	0	
2	2	0	0	2/5	59.44	29.72	0.8	0.8	7.96	12.09404	0	0	
3	2	2	0	2/5	89	44.5	0.8	0.8	11.25	12.09404	0	0	
4	3	1	1	2/5	110.3	55.15	0.8	0.8	13.18	12.05379	0	0	
4 Pe	ole Fig	gure(s) loa	ded • dəta:			<u>Open M</u>	emento X-Ray	Output	TEX file name: 隆	M448		atex
FSM	448							Ŷ	Initialize	Create	ATEX file an	d see the data	C

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

→ Orientation list from X-Ray measurements

2. Select your correction if needed then calculate the ODF by clicking on the "spark execute" button

3. Once your ODF is calculate, click on the red floppy button to save it, you will get an "*.CODF.ATEX" file

C as C-coefficient + ODF as Orientation Density Function

Pole Figure: (200) | Type: REC | Symm.: Cubic | Intens Min: -0.002 | Intens Max.: 3.212 | Phi= Ind, Khi= Ind

UNIVERSITÉ 11

Once you have your ODF, you have to discretize it to produce a list of single orientation

- Select the "TOOLS" tab and click on the discretize button to open the discretization module
- 2. Load your ODF (*.codf.atex) file
- 3. Choose your discretization method and click on the "RUN DISCRETIZATION " button
- You will get a new file "orli.atex" file containing the orientation list for the simulations

TUTORIAL Textures Simulation – Crystal Plasticity

→ Discretize an ODF

ODF discretized \rightarrow ODF re-calculated

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements

- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- 4. Simulations On Orientations Maps

→ EBSD to Orientation List

- 1. Open an EBSD map (*.ebsd.atex)
- 2. In the tab "Data Info" several options to export your data are available:
 - 1 SMT and TXT 2 – ORLI.ATEX 3 – CTF
- 3. Question: From what my orientation list should be composed ?
 - Export full map
 part of map
 one orientation
 per grains
 selected grains
 (see next slide
 partitioning)

Go to tab

Select the

mode" for

button to

map

map

1.

2.

3.

4.

TUTORIAL Textures Simulation – Crystal Plasticity

→ EBSD to Orientation List, Partitioning

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

→ EBSD -> ODF -> Discretization

\rightarrow Examples of orientation list with the different methods

6.42

5.85

5.27

4.70

4.13

3.56

2.99

2.42

1.84

1.27

0.70

EBSD \rightarrow full texture ODF calculated from all the 221000 pixels

EBSD \rightarrow one orientation per grain (the average orientation), 246 grains (>1 pixel)

$EBSD \rightarrow ODF \rightarrow Discretization 1000 orientations$

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

Content

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements
 - 3. Orientations Maps (EBSD)

- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- 4. Simulations On Orientations Maps

- 1. Open ATEX
- 2. Click on the "Simulations" button
- 3. Select "Creator" module
- 4. Select the "Textures" tab
- 5. Click the "Random check box", select 1000 orientations and execute

→ Simulations (VPSC) generate 1000 random orientations

∧⊤∃X - Data Creator	${\color{black}{\otimes}} {\color{black}{\otimes}} $
Microstructures Text(
Texture Generator	
Lattice parameters	
choose Phasis a: 1 b: 1 c: 1 Space Group: 229 α: 90 β: 90 γ: 90 Name: Phase 1	
Single Orientations	
Single Orientations	
# Orient.: φ1	
φ2	
vol.	
Fibres	
Fibres	
#Fibre: XC YC ZC p/d XS YS ZS p/d angle angle spread Nb Or.	
1 ↓ 1 1 p o o 1 d o 360 5 1000	
p/d : plan or	
direction	
☑ Randon	
O Indom Texture	
Nb of Orientations: 1000	
	۲,

20

Check the generated texture

1000 random orientations

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

1. Select the "SIMULATIONS" tab and click on VPSC button to open the VPSC module

\rightarrow Simulations (VPSC)

TEX^{Version 3.5} Université de Lorraine

Analysis Tools for Electron and X-ray diffraction

Open atex files

Import data

Simulations

Help - Support

Authors, contributors...

Licenced to Benoit BEAUSIR

Tools

Welcome Benoit

1.

4.

TUTORIAL Textures Simulation – Crystal Plasticity

\rightarrow Simulations (VPSC)

Shear = 2, Aluminium

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

→ Simulations (VPSC)

→ Simulations (VPSC)

→ Simulations (VPSC)

 Euler space Sections of the simulated texture, here phi2=0° and 45°

> Typical representative sections cubic materials under simple shear

- 1. Select the "SIMULATIONS" tab and click on "Flowlines" button to open corresponding module
- 2. Select either ECAP or ROLLING tab
- 3. Set your parameters and click on "Export velocity gradient..." button

→ Simulations (VPSC) - varying strain path

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

→ Simulations (VPSC) - varying strain path

1. Select "varying strain path"

2. Choose your *.vel" file

Ν

Fichier	Édition	Recherche A	Affichage En	odage Lang	age Paramètres	Outils Ma	ro Exécu	tion Modules	d'extension Do	cuments ?						х
ි 🚽		🗟 🐚 🚔 🛛	k 🖻 🖬 🕴	> ⊄ # ′	🦕 🔍 🔫 🍱	🔤 📑 1	1 🖉 🕸	📓 🔊 🔝								
🗄 veloc	:ity_gradier	nt.vel 🔀														
1	Rolli	ng Flowline	s - ATEX-s	oftware												^
2		dt	L11	L12	L13	L21	L22	L23	L31	L32	L33	volume				
3	200															
4	1	0.01507149	0.00	1702439	0.00000	0.00356	9726	0.00000	0.00000	0.0000	0 -0.	00196009	0.00000	-0.001702439	0.00000	
5	2	0.01507149	0.001	1772281	0.00000	0.00358	1313	0.00000	0.00000	0.00000	0 -0.	001958638	0.00000	-0.001772281	0.00000	
6	3	0.01507149	0.00	1842065	0.00000	0.00359	2517	0.00000	0.00000	0.00000	· -0.	001951264	0.00000	-0.001842065	0.00000	
8	5	0.015071			0.00000	0.00301	5342	0.00000	0.00000	0.00000	-0.	001930100	0.00000	-0.001911303	0.00000	
9	6	0.015071	$T \equiv X - VP$	SC												
10	7	0.015071	c	imulation	Parameters			Coloct Cl	n Sustana		Process Start	ed at: 3/2///202	1 2·00·/2 PM		00	
11	8	0.015071	5	inulation	rarameters			Select Sil	ip systems		Microsoft Wir	ndows (version 1	0.0.19041.8671			
12	9	0.015071	Self-Con	sistent 🔵 T				ummotru 💽	hin.		(c) 2020 Micr					
13	10	0.01507						ynnieery. Cu	DIC	· ·					00	
14	12	0.01507			icrements:				r hexagonal:	1.00 ≑					000	
16	13	0.01507			rad comp.: 📃	0.01			_						0000	
17	14	0.01507			· · · · · =	0.1		nilies:		•					000	
18	15	0.01507		Strain rate	e sens. (m):	0.1									0	
19	16	0.01507			n equation: 🛛 🛛	.7 🔶			ength [MPa]:	1.0 🔤					000	
20	17	0.01507			atar (mu)	00 +									0	
21	18	0.01507					and ot	her case harde	ning param:						000	
22	20	0.01507			🔊 varving strai		1.0								0000	
24	21	0.01507	Constant	scrain pacifi	Var yn ig ser al		1.0	1.5		1.5					ő	
25	22	0.01507			1)										000	
26	23	0.01507	0	0		തി	Twi		f shear: 1.	0 🚖					000	
27	24	0.01507	0 0	0											000	
28	25	0.01507	0 0	0											0000	
30	20	0.01507						Remove	Add						0000	
31	28	0.01507													0000	
32	29	0.01507	Sphere t	o Ellipse 🛛 🤇	Keep Sphere										0000	
33	30	0.01507	nitial grain sh	ape tensor:	1 0	0									0000	
34	31	0.01507			0 1	0									0000	
35	32	0.01507			0 0	1									000	
30	33	0.01507			0										000	
38	35	0.01507		_											0000	
39	36	0.01507	Use hard	lening											000	
40	37	0.01507	166		190.0 ^	2.25									000	
41	38	0.01507	au sat.:	no:	ap:	2.25 👻									0000	
42	39	0.01507	_												00	~
4.5	40	0.01507	Cluster e												0000	INC
vormal	text file						A a b									
		L					2 <u>Relate</u>	ed publication		Default						
			_													
			🔶 Lo	ad Input Text	ure (if you have	ebsd data, op	en it, exp	ort them to an	*.orli.atex file in	n the EBSD "1	Fools" tab)		Energy M	ap 📃 📐		

👕 *C:\Users\FEUDENBERGER-ADMIN\Documents\ATEX_V3.5_RELEASE_V3.5\DOCUMENTS\PRESENTATIONS-COURS-TUTO\DATA_crystal_plasticity_textures_simulations\velocity_gradient.vel - Notepad++

 $\Box \times$

_ist

0

Axis - Angle

✓ Create a new ATX file

Export ODF

Textures

TUTORIAL Textures Simulation – Crystal Plasticity

→ Texture calculation Options

Textures 1. calculation options

1.

2.

TUTORIAL Textures Simulation – Crystal Plasticity

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

Convention x // a

Convention y // a

ROTATION by 30° around the c-axis (phi2=phi2+30°)

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

Content

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements
 - 3. Orientations Maps (EBSD)
- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- 4. Simulations On Orientations Maps

→ Ideal (stable) orientations

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

→ Ideal (stable) orientations

- 1. Select the components you want to know the volume fractions
- 2. Here the ideal orientations for fcc crystals under simple shear
- 3. Click on the "color" button and then on the "evaluate" button

Click on the

1.

2.

3.

4.

TUTORIAL Textures Simulation – Crystal Plasticity

\rightarrow Ideal (stable) orientations

"show TEX Pole Figures components" Plotting Levels - Company Ŧ button in the oloring 6.44 6.44 (100)vertical tool bar Contours O O Filled Contours next to the pole • € figure plots 4.35 Gray Scal 👻 3.83 2.79 2.79 Select "Levels -Levels coloring' tab Number of levels: 12 🚔 🗹 All Same Levels 0.70 3.83 Fill coloring -> max = 6.44 max = 3.54 4.35 "Gray scale" Lmax = 22 4.87 Stereographic Stereographic 5.39 In Components 5.92 10) **Plotting Options** 6.44 3.31 6.44 6.44 (112)- increase the 5.39 5.39 0.05 📫 size of the components 6.44 ≑ 3.83 - select "Names" Adapt levels nv. Gra 9 Reset levels **Components Plotting Options** O Points Components Only O Names (Lmax = 22 Lmax = 22 Stereographic Stereographic | Pole Figure: (110) | Type: REC | Symm.: Cubic | Intens Min: -0.036 | Intens Max.: 4.424 | Phi= Ind, Khi= Ind | Current PF Value: Ind

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

Content

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements
 - 3. Orientations Maps (EBSD)
- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- 4. Simulations On Orientations Maps

- 1. Click on the "TOOLS" tab then select the "Compare" module.
- 2. Select the two textures to be compared, It can be either an ODF or an ORientation List
- 3. Run the computation

∧TΞX - Textures Correlation	$\odot \odot \otimes$
Load Data 1 Please load the data set 1, an ODF or an orientations list (*.codf.atex, *.orli.atex files)	
Please load the data set 1, an ODF or an orientations list (*.codf.atex, *.orli.atex files)	
Textures Options 43	
Best Correlation Rotation	
phi: 00 C 3600 C 50 C	
phi: 0.0 🗧 30.0 🗧 5.0 🗧	
phiz: 0.0 🗢 90.0 🗢 5.0 🗢	
Textures Options	
Sample symmetry: Triclinic •	
Calculation Method: Boxing + C-coel -	
Boxes size (1 - 15'): 🗧 🚊	
Development EVEN: 22 🚔	
Development ODD: 21 🚔	
Gaussian width (*): 🗧 8 🚔	
Isotropic Part 0.00 🚔	
Results	
	ĸ

 \rightarrow Correlation

→ Correlation

→ Correlation

Correlation indicators

Texture Index:

Texture Difference Index:

$$J_{diff} = \int_{g} (f_A(g) - f_B(g))^2 dg$$

 $J_{index} = \int f(g)^2 dg$

$$V_{delta} = \frac{1}{2} \int_g \left| f_A(g) - f_B(g) \right| dg$$

$$D = \frac{\int_g f_A(g) f_B(g) dg^2}{\sqrt{\int_g f_A^2(g) dg^2 \cdot \int_g f_B^2(g) dg^2}}$$

$$H = \frac{1}{\sum l} \sum_{l=l_{min}}^{l_{max}} l \cdot C(l)$$

$$L = \frac{1}{\sum l} \sum_{l=l_{min}}^{l_{max}} (l_{max} - l) \cdot C(l)$$

Direct Correlation:

High Ranks:

Low Ranks:

→ Correlation

А

Textures Comparison

Theory

Let A and B two textures expressed on the basis of spherical harmonics,

and

 $B_i^{m,n}$

 $A_i^{m,n}$

the corresponding series of complex numbers.

The correlation coefficient between the two textures is then given by:

$$C(l) = \frac{\sum_{m} \sum_{n} A_{l}^{m,n} B_{l}^{m,n} + \sum_{m} \sum_{n} A_{l}^{m,n*} B_{l}^{m,n*}}{\sqrt{(\sum_{m} \sum_{n} A_{l}^{m,n} A_{l}^{m,n} + \sum_{m} \sum_{n} A_{l}^{m,n*} A_{l}^{m,n*})(\sum_{m} \sum_{n} B_{l}^{m,n} B_{l}^{m,n} + \sum_{m} \sum_{n} B_{l}^{m,n*} B_{l}^{m,n*})}$$

If C(l)=1 then A and B are proportional at rank l

A and B will be identical if both all C(l)=1 and all P(l)=1

$$P(l) = \frac{\sum_{m} \sum_{n} A_{l}^{m,n}}{\sum_{m} \sum_{n} B_{l}^{m,n}}$$

In n-degrees of freedom problem, the probability that the

$$t=\sqrt{n/(1-r^2)}$$

variable be less than a certain value t0 is the student's t-distribution Q(t,n). Thus the value 1-Q(t,n) is the confidence level at which the hypothesis of a correlation due to chance is invalidated.

- 1. Here is written the list of what to do
- 2. This hand tells you where to click

Content

- 1. Input Data
 - 1. Generate textures
 - 2. X-Ray measurements
 - 3. Orientations Maps (EBSD)
- 2. Simulations (VPSC)
- 3. Simulations vs Experiments
 - 1. Ideal Orientations
 - 2. Correlation
- - 4. Simulations On Orientations Maps

- 1. Fill all the parameters, it is the same than previously in the VPSC module
- 2. Choose your slip systems
- 3. Choose the output maps you would like to obtain
- 4. Run the simulation

$\land \tau \equiv x$ - Crystal Plasticity			⊗ ⊗									
Simulation Type	Select Slip Systems	Slip Systems (Including Twin systems)	-0.8660 -1.5000 0.0000 1.7321 0.0000 -0.8660 1.5000 -1.7321 0.0000 0.0000									
O On Pixels Phase: 1 🖨 Cubic	Families: (111)<110>	Click on a color to modify it	0.0000 -1.0000 1.7321 1.7321 0.0000 0.0000 0.0000 1.7321 1.7321 1.7321									
Simulation Parameters	initial reference strength [MPa]: 1.002		0.8660 -0.5000 1.7321 0.0000 1.7321 -0.8660 -0.5000 0.0000 1.7321 1.7321									
● Self-Consistent ● Taylor	coplanar, colinear, perpendicular		-0.8660 1.5000 1.7321 0.0000 0.0000 0.0000 -1.0000 -1.7321 1.7321 0.0000 -1.7321 1.0000 0.0000 0.0000									
Number of increments: 1 😑	1.0 ↓ 1.5 ↓ 2.0 ↓ 1.5 ↓	4 (1 -1 -1)<0 1 -1 >	0.0000 0.0000 0.0000 -3.4641 0.0000 -0.8660 -0.5000 0.0000 -1.7321 -1.7321									
Strain inc. in the max velgrad comp.: 0.01		$\begin{bmatrix} 5 & (1 & -1 & -1 &) < 1 & 0 & 1 \\ (1 & -1 & 1 &) < 1 & 1 & 0 \\ \end{bmatrix}$	-1.7321 0.0000 0.0000 0.0000 -1.7321 0.0000 0.0000 -1.7321 1.7321 1.7321									
Strain rate sens. (m): 0.1	Twining amount of shear:	7 (1 -1 1)<0 1 1 >	-0.8660 0.5000 1.7321 0.0000 -1.7321 -0.8660 0.5000 1.7321 0.0000 1.7321 -0.9000 0.9000 1.7321 1.7321									
alfa param. In Interaction equation: 0.7	Remove - Add	8 (1 -1 1)<1 0 -1 >	0.0000 0.0000 1.7321 -1.7321 1.7321 -1.7321 0.0000 0.0000 0.0000 1.7321 -0.8660 -0.5000 0.0000 -1.7321 1.7321									
	[1 -1 0]/(1 1 1) Strength: 1	9 (1 -1 1)<1 1 0 >	-0.8660 -1.5000 0.0000 -1.7321 0.0000 -1.7321 -1.0000 0.0000 0.0000 0.0000									
Constant strain path		$11 \qquad (1 1 1) < 1 0 -1 >$	0.0000 0.0000 3.4641 0.0000 0.0000 0.0000 -1.0000 1.7321 -1.7321 0.0000									
	Ouput Map Options		-0.8660 -0.5000 0.0000 1.7321 -1.7321 -0.8660 0.5000 -1.7321 0.0000 1.7321 0.0000 0.0000 -1.7321 1.7321									
	Zavlor Sactor		0.0000 -1.0000 -1.7321 -1.7321 0.0000 tiny and partst files have been read									
	✓ Plastic Spin		reduced & renormalized grains = 221200 lbar=									
• Sphere to Ellipse • Keep Sphere	✓ Shear Rate for each Slip System ✓ abs		0.000000 1.000000 0.000000 0.000000 0.000000 0.000000									
Initial grain shape tensor: 1 0 0	✓ Stress Rate for each Slip System ✓ [abs] ✓ Slip Systems of maximum shear.		scaling par 1.5025 1.5014 1.5026 1.5025 1.5025 #eration= 1 mu= 0.3267860 error= 0.3252631									
	and the 1 🚖 followings		iteration= 2 mu= 0.2465820 error= 2.4406653E-02 iteration= 3 mu= 0.2407071 error= 5.4072461E-04									
	• With color variation • No Variation		step = 1 finished									
	✓ Multi slip Map threshold (%): 10 🗧		C:\Users\FEUDENBERGER-ADMIN\Documents \ATEX_V3.5_RELEASE_V3.5\ATEX\bin\v64\Belease\vnsc\cd									
	Related publication Default Settins	Load color (SS_colors.ini) Generate Scale										
Cluster effects												
		(The										

ATEX - Plastic Energy Rate [mW/mm3]

ΓΞΧ

ATEX - Shear Rate in (1-1-1)<01-1> [s-1]

ΤΞΧ

ATEX - Shear Stress in (11-1)<101> [Mpa]

ΤΞΧ

ATEX - Number Of activated slip systems

ΓΞΧ

ATEX - Slip Systems of maximum shear stress

Step size: 0.5µm Resolution: 560x395 Index. Rate: 100% Magnification: x200 Tension: 15kV

ΓΞX

$\nabla T \equiv X$

Analysis Tools for Electron and X-ray diffraction

Textures Simulation – Crystal Plasticity

Benoît Beausir & Jean-Jacques Fundenberger

University of Lorraine, Metz, France

www.atex-software.eu www.atex-software.eu/help.html www.youtube.com/channel/UCQcAjUova-pa9bGYWVtizGA

ATEX is free for non-commercial use.

ATEX© Software (2018) source code and documentation are copyrighted (IDDN.FR.001.420015.000.R.P.2014.000.20700) and may not be redistributed or placed on public Web servers without permission.

