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The aim of the paper is to show experimental evidence of the rotational defects referred to as disclina-
tions in polycrystalline aggregates. Using orientation maps obtained from electron backscattered
diffraction or transmission electron microscopy, a method for the recovery of components of the
disclination density tensor is presented and applied to various polycrystalline materials. Mapping the dis-
clination densities reveals their extensive presence at intra-granular low-angle boundaries, low and
high-angle grain boundaries and triple junctions, irrespective of the material symmetry and grain size.
A significant level of rotational incompatibility, with dipolar distribution of the disclinations, is detected
in all cases investigated. Since high-angle rotational incompatibility cannot be accounted for consistently
by dislocation-based models, the present results support considering disclinations in addition to disloca-
tions in the interpretation of grain boundaries and triple junctions.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Disclinations and dislocations are crystal defects simulta-
neously introduced by Volterra at the turn of the last century
(Volterra, 1907). Dislocations arise from translational incompati-
bility of the crystal lattice, whereas disclinations originate in its
rotational incompatibility (deWit, 1970, 1973). Disclinations have
long been considered as secondary topics in the theory of crystal
defect fields, perhaps because their occurrence as isolated crystal-
line objects is precluded by the large level of elastic energy they
involve, as compared with dislocations (Friedel, 1964). However
self-screened disclination configurations, such as disclination
dipoles, involve energy levels comparable to dislocation ensembles
(Romanov and Vladimirov, 1992; Romanov and Kolesnikova,
2009). Being rotational defects, disclinations are a priori well suited
for the description of imperfect lattice structures in instances, such
as grain boundaries, where a single-valued elastic rotation field
does not exist. Despite this predisposition, grain boundary model-
ing has preferentially used dislocation-based approaches over the
last decades, most probably because low-angle boundaries have
been directly observed to contain dislocation structures. Thus,
employing the Frank-Bilby surface-dislocation concept (Frank,
1950; Bilby, 1955), dislocation-based models have become widely
accepted for the description of low-angle boundaries. There may
also be utility in modeling high-angle boundaries using a disloca-
tion-based approach, although direct microscopic evidence of such
dislocation structures is then lacking. Such models are efficient at
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predicting geometrical properties of grain boundaries, such as
the coupling factor relating the normal motion of a tilt boundary
occurring in response to imposed shear (Cahn et al., 2006). How-
ever, boundaries terminating at triple junctions, the most frequent
situation in polycrystals, cannot be portrayed consistently in this
manner. Furthermore, accounting for high disorientation angles
with a dislocation-based approach requires such large surface-
dislocation densities that overlapping of dislocation cores may
occur. For example, describing a 60° symmetric tilt-boundary with
edge surface-dislocations needs a density of four dislocations per
nm according to Frank’s formula, a density overly in excess. Discli-
nation-based models remove these limitations and cover more of
the microscopic observations. They can be used to model high-
angle boundaries and to account for their structure (Li, 1972; Shih
and Li, 1975; Gertsman et al., 1989; Hurtado et al., 1995). Hence,
experimental observation and quantitative characterization of dis-
clinations through their density fields is of great interest.
Disclinations have indeed been inferred at grain boundaries
from optical microscopy observations (Romanov and Kolesnikova,
2009), or observed in the grain interior using high-resolution
transmission-electron-microscopy (Murayama et al, 2002;
Motylenko et al., 2004). However, a situation similar to that de-
scribed above in grain boundary modeling has been prevailing in
electron backscattered diffraction (EBSD) investigations. Although
the orientation maps contain information on rotational incompat-
ibility, they have been used almost exclusively for the recovery of
Nye’s dislocation densities (El-Dasher et al., 2003; Field et al., 2005;
Pantleon, 2008). Disclination densities have only recently been
evidenced at triple junctions and low-angle boundaries (Zisman
et al., 2008). The characterization of the dislocation densities from
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orientation maps is based on a relationship established in the the-
ory of crystal defect fields between the elastic curvature tensor,
Nye’s curvature tensor and the curl of the elastic strain tensor
(deWit, 1970). Most often this last term is disregarded for the sake
of simplicity, and the elastic curvature obtained from the orienta-
tion maps is equated with Nye’s curvature. In the theory of dislo-
cations, the elastic curvature tensor is defined as the gradient of
the elastic rotation vector (Kréner, 1958, 1980). As such it is curl-
free. However, if rotational incompatibility is present, it is not a
gradient tensor anymore, and its curl yields a non-zero disclination
density tensor (deWit, 1970).

In the present paper, we present a method using orientation
maps to determine at least three components of the disclination
density tensor. The objective is to help decide whether or not a
theory of crystal defects involving disclinations in addition to dis-
locations is needed in a particular physical situation. The outline of
the paper is as follows. In Section 2, after notation conventions are
settled, we briefly review the theory of incompatibility in crystal-
line solids (deWit, 1970), to provide a fundamental basis for the
forthcoming Sections. Section 3 details the method for recovering
components of the disclination tensor, and provides information
on the particular materials investigated in this work. In Section
4, the corresponding maps of disclination densities are presented,
together with a statistical analysis of their distribution. A discus-
sion of these results is provided in Section 5, and conclusions
follow.

2. Review of the incompatible elasto-static defect theory

Our notations are as follows. A bold symbol denotes a tensor.
When there may be ambiguity, an arrow is superposed to repre-
sent a vector: V. The symbol A B represents multiplication of the
tensors A and B, e.g., (A.B),-j = AiBy; for second order tensors. A:
represents the inner product of the two second order tensors
A : B = A;By;, in rectangular Cartesian components, or the product
of a higher order tensor with a second order tensor, e.g.,
A : B = AjjiBy. The div and curl operations for second-order tensors
are defined row by row, in analogy with the vectorial case. For any
base vector e; of the reference frame:

(div A) .e; = div(A'.e)), 1)
(curl A)'.e; = curl(A'.e)). )

In rectangular Cartesian components:

(div A), = Aj;, 3)
(curl A); = e, 4)

where ej, is a component of the third-order alternating Levi-Civita
tensor X, and a subscript comma indicates partial spatial differenti-
ation. A vector A is associated with tensor A by using its inner prod-
uct with tensor X:

(), =~ (A X), =~y ey 5)

In the present framework, it is assumed that the displacement vec-
tor u can be defined continuously at any point of a simply-con-
nected body containing crystal defects. Therefore, the total
distortion tensor defined as U = grad u is curl-free:

curl U=0. (6)

Eq. (6) is a necessary condition for the integrability of the displace-
ment u. Conversely, this equation is sufficient to assure the
existence of a single-valued continuous solution u to the equation
U = grad u, up to a constant translation. Eq. (6) is referred to as
the compatibility condition for the distortion U. Defining the strain

tensor € as the symmetric part of U, the rotation tensor w as its
skew-symmetric part and the associated rotation vector @ as:

H= 10X )
Eq. (6) becomes:
curl € + curl ® = curl € + div(®)I - grad' @& =0, (8)
where I is the identity tensor. Transposing, then taking the curl of
Eq. (8) leads to:
curl curl’ € = 0. (9)

This relation is the well-known Saint-Venant compatibility condi-
tion for the strain €. It is a necessary condition for the integrability
of the displacement u. The trace of Eq. (8) similarly yields a compat-
ibility condition for the rotation vector in the form:

div(@) = 0. (10)

In the presence of dislocations, the elastic distortion U. contains a
non-gradient incompatible part, U,, because the elastic displace-
ment is not single-valued. A curl-free elastic compatible compo-
nent, Ul, may also exist to satisfy the balance of equilibrium and
boundary conditions, and the following relations are therefore
satisfied:

U.=U, + U}, (11)

curl U, = a, (12)

where a may be non-zero. The incompatibility Eq. (12) defines the
incompatible elastic distortion U associated with the presence of
Nye’s dislocation density tensor a. Since Uﬂ is curl-free, Eq. (12) is
still true when Uj is replaced with U,:

curl U, = a. (13)

Therefore, to ensure that the incompatible part U, vanishes identi-
cally throughout the body when « = 0, Eq. (12) must be augmented
with the side conditions div U, = 0 and U, - n = 0 on the boundary
with unit normal n. Further, the continuity condition:

diva=0 (14)

follows directly from Eqs. (12) and (13).

Applying the above curl-trace procedure to the elastic distortion
and Eq. (13), we obtain from the curl operation, with self-evident
notations, an equation parallel to Eq. (8):

curl €, + curl w, = curl €, + div(a, )l — grad® @, = a. (15)

From the trace operation, we find an equation parallel to Eq. (10):

div(@,) = %tr(cx). (16)

Motivated by the Saint-Venant compatibility condition (9), we
transpose Eq. (15) and further rearrange with the help of Eq. (16),
to obtain:

grad @, = curl' €, + K, (17)
I(:%tr(oz)l—ac" (18)
At this point, we can define the elastic curvature tensor, k., as:

k. = grad @, (19)
and take the curl of Eq. (17), to find:

curl x, = curl(curl’ €, + K) = 0. (20)

Hence, in the theory of dislocations, the elastic curvature tensor
K. is curl-free and an integrable quantity. K is defined as Nye’s
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curvature tensor (Nye, 1953). Interestingly, k. can be directly mea-
sured from the orientation maps obtained by EBSD. By additionally
recovering the elastic strain field to compute curl €., one can exper-
imentally infer the dislocation density tensor a from Eqs. (17) and
(18). Such information may be obtained from the analysis of the
shift of electron diffraction patterns (Wilkinson et al., 2006; Kacher
et al., 2009; Villert et al., 2009), but most often the curl €, term is
overlooked and . is equated with K (El-Dasher et al., 2003; Field
et al., 2005; Pantleon, 2008), which yields components of Nye’s ten-
sor a through:

o= tr()I - K', (21)
a relationship reciprocal to Eq. (18), or through:
a = curl w,. (22)

If x. is not supposed to be curl-free anymore, i.e., if the possibility of
its non-integrability and of a rotational incompatibility are
acknowledged, then the rotation tensor w, and rotation vector @,
do not exist, and a non-zero tensor 6 such that

0 = curl k, (23)

must be defined. 0 is the disclination density tensor, and Eq. (23) is
part of the theory of crystal defects (dislocations and disclinations).
It replaces Eq. (20), which pertains to the theory of dislocations. Eq.
(23) implies that the elastic curvature tensor is not integrable and
the elastic rotation not single-valued when the disclination density
is non-zero. An incompatible elastic curvature, k,, is therefore asso-
ciated with the presence of the disclination density 6. A curl-free
compatible part of the elastic curvature, k!, may also exist in order
to verify equilibrium equations and boundary conditions. As already
discussed in the case of translational incompatibility, to ensure that
the incompatible part %, vanishes identically throughout the body
when 0 = 0, Eq. (23) must be replaced with:

0 = curl k!, (24)

augmented with the side conditions div ¥} =0 and x} -n =0 on
the boundary with unit normal n. These conditions ensure unique-
ness of the solution. Eq. (23) shall be used in the next Section to
determine disclination densities from orientation maps. The conti-
nuity condition for disclinations:

divo=0 (25)

follows directly from Eqgs. (23) and (24). It implies that disclination
lines do not end inside the body. Since the rotation vector @, does
not exist in the theory of crystal defects, the corresponding elastic
distortion tensor U, is also undefined. Substituting the elastic curva-
ture tensor k., which now includes an incompatible part, for
grad w, in Eq. (15), leads to the modified equation:

curl €, = a+ K} — tr(x,)L (26)

Eq. (26) defines the incompatible elastic strain associated with the
dislocation density tensor « in the concurrent presence of incom-
patible elastic curvature. The continuity condition (14) for disloca-
tions is also modified in the theory of crystal defects. Taking the
divergence of Eq. (26) and defining the twist-disclination vector ®
as:

1

6=-50:X (27)

it is found that:
div o +260 = 0. (28)

This continuity equation implies the existence of geometric interac-
tions between twist-disclinations (i # j) and dislocations. Its mean-
ing is that dislocation lines can end on disclinations in the body. Of

course, when the disclination density vanishes, Eqs. (26) and (28)
reduce to Egs. (13) and (14), and the elastic theory of crystal defects
reduces to the theory of dislocations. In the presence of orientation
maps obtained from a polycrystalline material, the aim of the pres-
ent paper is to give indications on whether a theory of crystal de-
fects (dislocations and disclinations) or a theory of dislocations is
suitable for an interpretation.

3. Method and experiments

By means of conventional EBSD or any other technique of orien-
tation mapping, local lattice orientations are known at individual
points in a regular grid on a planar surface of a sample. Let us
use a square grid, aligned with the unit vectors (eq, e;) of the sam-
ple reference frame (e;, e, e3), and denote the components of the
elastic rotation vector @, as: (0;; Vi € (1,2,3)). The disorientation
vector between two neighboring points A and B is Afr = Ao0;e;,
where A6 denotes the disorientation angle and r the disorientation
axis. It derives from the rotation mapping one local lattice frame
onto the other, or from the disorientation tensor Ag =g, g;
where the orientation tensors (g,,8z) specifying the rotation of
the lattice at both locations are composed. The analysis readily
shows that the components A6; of the disorientation vector are
A0; = e Ag; A0/ 2sin(A0) (Pantleon, 2008). From the disorienta-
tions A0; between neighboring points separated with Ax;, only six
components of the elastic curvature tensor can be captured, be-
cause differences along the normal direction es; are not available:

_AY;

K~ —

P~ ay Yie(1.2,3) Vie(1.2). (29)

Using this result, it was shown from Eq. (21) that five dislocation
densities can be recovered, namely: (012,013, 0%1,0023,033) in the
present reference frame (Pantleon, 2008). In the absence of disclina-
tions, Eq. (22) was alternatively used to recover the dislocation den-
sities (see for example (El-Dasher et al., 2003; Pantleon, 2008)),
because the components wf; of the elastic rotation matrix can be
approximated as wf ~ g; — d¢; for small disorientations, with help
of the orientation matrix components g;. Consequently, the disloca-
tion density tensor, as provided by Eq. (22), may be written in terms
of the orientation tensor g as:

a=curl g (30)

with identical conclusions. However, Eq. (30) is invalidated in the
presence of disclinations, because the elastic rotation tensor does
not exist anymore. The recovery of disclination densities involves
differences in the elastic curvatures. In component form, Eq. (23)
reads:

O = €jraki (31)

Hence, it is readily seen from Eqgs. (29) and (31) that the three com-
ponents: 63, Vi€ (1,2,3) are directly obtained from conventional
planar measurements. In contrast with the recovery of dislocation
densities, no additional information on the elastic strain field is
needed in this determination process. A complete recovery of the
nine disclination densities can follow if the differences in the orien-
tation angles and curvatures become available in the third direction
es. Such information can be obtained by carefully erasing thin slices
orthogonal to e3;, by using for example the focused ion beam
technology.

The grain boundaries and triple junctions were defined as fol-
lows from the orientation maps. First, the disorientation of each
pixel with its four (north, south, east and west) neighbors was
examined. When the disorientation exceeded the “grain tolerance
angle” (here 5°), a boundary was defined. Note that, as a conse-
quence, grain boundaries coincide with pixel boundaries. Once
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Table 1

Orientation and topographic data in the analyzed samples.
Material History Average diameter (pum) Nb. of grains Nb. of triple junctions 3°<0<5° (%) 5°<0<15° (%)
Copper ECAP 1 pass 0.79 1187 1592 40.57 37.79
Aluminum Electrodeposited 0.028 3160 4989 1.06 5.72
IF-steel ECAP 3 passes 0.309 712 844 47.72 24.59
Titanium Annealed, 1% tension 4.00 3738 7122 0.22 3.64

the set of all boundaries was captured, a flood-fill procedure was
applied to search for sub-areas bounded by a closed boundary.
Such sub-areas were defined as grains. A triple junction was
acknowledged when three different grains were detected in a
2 x 2 pixels array. Quadruple junctions were also obtained, but
they are not studied perse in this work. Table 1 includes the main
disorientation and connection features found in this way in all
samples analyzed in the present work. The grain average diameter
given in the third column was obtained by using the equivalent cir-
cle area method. As can be seen from the number of grains and tri-
ple junctions, the statistical sampling was sufficient in all samples.
The fractions of boundaries in the ranges 3°-5° and 5°-15° are also
given in the table for all samples investigated. In the present state
of the art, the angular accuracy of orientation mapping by EBSD is
about 0.5°. In the experiments reported in the present paper, the
spatial resolution was in the range 6.5 nm through 0.2 um, and
the spatial accuracy was about 1 nm. In such conditions, Eq. (31)
shows that the disclination densities at grain boundaries are
inferred with a 20% error for 5° disorientations, but that the rela-
tive error may reduce to about 1% when the disorientation reaches
the highest angles, e.g., 90° in hcp materials. Therefore, confidence
in the results acquired for low-angle boundaries is limited, but the
orientation properties of high-angle boundaries should be ren-
dered rather properly. The five available components of the dislo-
cation density tensor were acquired by using the analysis detailed
in Pantleon (2008). With the angular and spatial resolution indi-
cated above, the relative error in their measurement ranges from
about 1% to 10%.

The analysis, i.e. the determination of the dislocation and discli-
nation density fields, was first applied to fcc materials subjected to
equal channel angular pressing (ECAP) at room temperature. It has
been suggested that disclination-based approaches could help ex-
plain the peculiarities of the flow stress dependence on the grain
size in nano-grained materials (Romanov and Vladimirov, 1992;
Romanov and Kolesnikova, 2009). Evidencing the presence of
disclinations in ECAPed materials would support these ideas. The
disclination maps shown in Fig. 1 were extracted from OFHC cop-
per deformed by one pass leading to the average shear strain y = 2.
The EBSD measurements were carried out at Monash University by
SEM on a LEO 1530 FEG instrument with a step size of 0.2 um.
Automated orientation analyses of the Kikuchi patterns were per-
formed using the Channel 5 software package produced by HKL
Technology. The mapping was performed in the plane of normal
ND (see Fig. 1). Detailed description of the experimental procedure
can be found in Téth et al. (2010). In contrast, the orientation map
in Fig. 2 was obtained from a sub-micron aluminum thin self-
standing film produced by electrodeposition technique (see (Malh-
aire et al., 2009) for details). The measurements were performed at
the Institut National Polytechnique in Grenoble (SIMaP laboratory)
using a Transmission Electron Microscope (TEM) equipped with
the SPINNING STAR technology produced by NanoMEGAS. Orienta-
tion mapping on a grid with a 6.5 nm step was carried out by ana-
lyzing the diffraction patterns with the ASTAR package.

The analysis was similarly applied to bcc and hcp materials. The
orientation map in Fig. 3 was extracted from an IF-Steel submitted
to ECAP, after three passes in route Bc at 300°C, leading to an

average shear strain y = 6. The measurements were performed at
the Indian Institute of Science (Bangalore), using a FEI-SIRION field
emission gun scanning electron microscope (FEG-SEM). The map
was obtained in the plane of normal TD (see Fig. 3). More details
can be found in Beausir et al. (2009). Finally, we used a technically
pure titanium in o phase, fully statically recrystallized at 720°C.
Figs. 4 and 5 were obtained after 1% strain in tension. The EBSD
measurements were performed at Université de Lorraine (LEM3-
Metz) using a FEG-SEM. The orientations were mapped using the
Channel 5 software package, with a 0.2 pm step size. Note that
the close-up map shown in Fig. 4 includes only 1% of the full
scanned area (295 x 218 um?). Since the data were very extensive,
statistical analysis of the maps was also conducted. The results,
shown in Fig. 5, will be discussed below.

4. Results

All the samples investigated involve widespread presence of
large disclination densities at low-angle sub-grain boundaries,
low-angle and high-angle grain boundaries, and triple junctions,
irrespective of the lattice structure, grain size and strain level. In
Figs. 1-4, the disclination densities are displayed in color-code,

using either the scalar measure 0= /6%, + 03, +03;, which

involves all measured disclination densities, or the wedge density
033. The arrows show the Burgers vector b associated with the
edge-dislocation densities (043, 0t23) per unit-surface:
b = a3e; +0p3€,. Fig. 1(d) additionally shows the length

1/ 025 + o3, of this vector using a contour map. The corresponding

dislocation line is collinear with es, the unit vector normal to the
figure. The density of disclinations in grain boundaries ranges from

5 x 10" rad m~? in ECAPed copper (Fig. 1) to 5 x 10" rad m~? in
the as deposited aluminum thin film (Fig. 2). It is usually orders
of magnitude lower in the bulk of the crystals, where it can be
comparatively neglected. A visual inspection of the grain bound-
aries can be conducted in the subsets (b) in Figs. 1-3, where
blow-ups of several grain boundaries are shown, and in Fig. 4.
The pixel size ranges from 6.5 nm in Fig. 2 through 0.2 um in
Fig. 1. At such resolution length scales, the disclinations are seen
as extended objects characterized by an aerial density, typically
spreading over 20 x 20nm? in Fig. 2 and 2 um? in Fig. 4. The obser-
vation reveals disclination dipoles aligned along the grain bound-
aries, as a positive wedge-disclination area can systematically be
coupled up with a close negative wedge area. Thus, the dipoles
build linear arrays of alternatively positive and negative wedge
disclinations 0s33. As a rule of thumb, a wedge-disclination dipole
features in its interior a distribution of edge dislocations
(at13, 0t23) whose Burgers vector is approximately normal to the di-
pole arm (see Fig. 1(b)).! Quadrupoles can also be observed (see
Fig. 4). Typically, the dipole separation is of the order of 10 nm in

1 It is perhaps useful to recall here that dislocation densities collectively refer to
ensembles of dislocation lines threading pixel-size patches (6.6 nm through 200 nm
in the present investigation). Note that the number of involved dislocations may be
rather small at the smallest pixel size.
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Fig. 1. Pure copper ECAPed, one pass. Shear strain 9 = 2. The main map (a) represents the scalar disclination measure 6 = /02, + 62, + 63; in rad m~2. The close-up maps (b),
(c) and (d) show respectively the density of wedge disclinations 633 (in rad m~2), the disorientation and the scalar dislocation measure o3, + 02y in m~! (i.e. the length of the

local Burgers vector per unit surface resulting from the dislocation densities (13, o;3)) along a high-angle boundary, while the close-up map (e) shows 0s; (in rad m~2) along
low angle sub-grain boundaries. In the subsets (b,e), the arrows represent the local Burgers vectors: their horizontal and vertical components are respectively o135 and o3 (in
m~'). The maximum Burgers vector length corresponds to a 3.85 x 10° m~! dislocation density. A continuous line indicates the presence of a disorientation of at least 5°. The
disorientation lies in the range 55°-62° along the grain boundary shown in subsets (b, c,d). The black arrows in subset (b) highlight two successive dipoles with vertical arm
lengths, horizontal Burgers vectors (normal to the arm length) and inverse polarities. Note the inversion of the Burgers vectors direction in the dipoles interiors.

Fig. 2 and 1 pum in Fig. 1. The edge dislocations are in relation with
the grains disorientation along the boundary, while the disclination
dipoles correlate with the variations in this disorientation (compare
Fig. 1(b) and (c)). It may sometimes look rather periodic, but is most
often irregular. Intra-granular disclination dipoles associated with
sub-grain boundaries can also be seen in Fig. 1(e). The presence of
rotational incompatibility in the neighborhood of triple junctions is
frequently observed in Figs. 1-4, but a close disclination area of
opposite sign may not be immediately available for dipole pinpoint-
ing. Nevertheless, the dipolar structure of the set of triple junctions
is recovered in a statistical sense. Indeed, Fig. 5 presents the proba-
bility P(6s3) of occurrence of the wedge disclinations 653 in the com-
plete titanium data set, a small 1% subset of which was used to build
Fig. 4. Using our EBSDmcf software (Beausir and Fundenberger, Xxxxx)
for the analysis of orientation maps, two different disclination sets
were considered in building this figure: (i) the complete set includ-
ing all boundaries and triple junctions, (ii) the subset involving only
triple junctions. Low-angle boundary data were discarded in this
figure to avoid inaccuracy at small wedge densities. Note in Table
1 that 7122 triple junctions were detected in the entire map. A
4 x 4 pixels array was considered around each triple junction to de-
fine its disclination content. It is seen that all distributions are fully
symmetric with respect to zero-wedge density, which statistically
proves dipolar status. Symmetric statistical distributions were
similarly obtained in all other cases investigated in this paper. In

addition, plotting P(fs3) in logarithmic scales shows that it obeys a
power law P(6s3) ~ 033 over an order of magnitude, with n=1.4
and n = 1.5 for triple junctions only and all grain boundaries respec-
tively. The cutoff seen at large disclination densities takes place
because a maximum misorientation between grains is existing,
which eliminates the possibility of an exponential dependence.

5. Discussion

In this Section, we discuss the structure of a disclination dipole,
as well as the alternating dipole sequences dotting the grain
boundaries and the triple junctions evidenced in Figs. 1-4. As al-
ready mentioned, disclination dipoles are self-screened configura-
tions whose elastic energy level compares to that of dislocation
ensembles. Thus, the dipolar character of the observed disclination
distributions is reassuring regarding their plausibility. In the elastic
theory of crystal defects (dislocations and disclinations), disclina-
tion dipoles are defined as a close pair of discrete line-disclinations
of opposite sign (de Wit, 1973). In the present work, they are rather
described as a close pair of extended areas supporting disclination
densities of opposite sign. This continuous rather than singular
point of view is motivated in the first place by the finiteness of
the pixel size. However, it also reflects the widespread occurrence
of large disclination densities over several contiguous pixels.
Further, arrays of edge dislocations are observed inside the wedge
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(b)

Fig. 2. As-deposited aluminum thin film. Map (a) shows the inverse pole figure. The close-up map (b) shows the density of wedge disclinations 053 in rad m~2. The arrows
represent the local Burgers vector resulting from the dislocation densities (013, 03): their horizontal and vertical components are respectively o3 and a3 (in m™'). The
maximum Burgers vector length corresponds to a 1.20 x 10° m™! dislocation density. A continuous line indicates the presence of a disorientation of at least 5°. Note the

direction of the Burgers vector, often normal to the dipole arm.

disclination dipoles, with in-plane Burgers vector normal to the di-
pole arm. The sense of the Burgers vector in the array is in relation
with the polarity of the dipole, as can be seen from two consecutive
dipoles in the midst of Fig. 1(b). An alternating arrangement of dis-
clination dipoles along grain boundaries has been predicted by the
Disclination Structural Units models (DSU) for grain boundaries
(Li, 1972; Shih and Li, 1975; Gertsman et al., 1989). However, our
observations are qualitatively and quantitatively different. First,
DSU models are based on singular rather than continuous disclina-
tion dipoles. Second, the separation distance of the dipoles
amounts to nanometers in the DSU models, whereas the presently
observed dipoles reflect variations in the curvature over tens to
hundreds of nms. Indeed the curvature variations at nm scale re-
main unresolved in the present work, due to an exceedingly large
pixel size. However, this observation raises questions as to how
such dipolar structures at different scales might relate to each
other.

Like grain boundaries, triple junctions and their properties can
be addressed from the use of disclinations. Two critical issues are
that of their energy (Fortier et al.,, 1991; Srinivasan et al., 1999;
Nazarov et al., 2003) and of their dislocation/disclination character
(Bollmann, 1991; Dimitrakopoulos et al., 1996). In incompatible
polycrystals, triple junctions may have disclination and/or disloca-
tion character if surface-dislocations and surface-disclinations are
allowed to accommodate tangential discontinuities of the elastic
strain and curvature tensors along the abutting grain boundaries
(Dimitrakopoulos et al., 1996; Upadhyay et al., 2011; Fressengeas
et al., 2012). Instead, compatibility of the polycrystal results in
the balance of the Burgers or Frank vector at triple junctions. In this
case, no disclination and/or dislocation character is assigned to
triple junctions. In this Frank-Bilby-type point of view, grain
boundaries are seen as interfaces with no width and triple junc-
tions as discrete lines. If, in contrast with such a singular approach,
continuous modeling of the grain boundaries is adopted in the
sense that tangential continuity of the elastic strain and curvature
tensors is required and recourse to singular surface-dislocation and

surface-disclination densities is dismissed, then all grain bound-
aries have a width and all triple junctions are dislocation/disclina-
tion free (Upadhyay et al., 2011; Fressengeas et al., 2012). Whether
or not a triple junction has dislocation/disclination character in a
Frank-Bilby perspective cannot be decided on the basis of the
present results because, as already mentioned, the pixels do not
embody a boundary in our orientation maps. Instead, the present
observations are consistent with a continuous point of view, inas-
much as rotational incompatibility is not assigned to the bound-
aries and triple junctions but to their close surroundings.

In addition to a visual inspection of Figs. 1-4, the dipolar struc-
ture of the disclinations in our samples is self-obvious from the
probability P(033) of occurrence of the wedge-disclination density
033 shown in Fig. 5. Indeed, it is fully symmetric with respect to
the sign of 033. The symmetry holds not only for the set of all grain
boundaries in the orientation map, but also for the subset com-
posed of triple junctions only. The symmetry in disclination den-
sity probability bears witness to the overall balance over the
map of rotational incompatibility and of the associated internal
stresses and couple-stresses. As seen in Fig. 6, decreasing the size
of the map does not prevent symmetry to hold, except in much
smaller samples. Only subsets including less than about 30 grains,
such as the subset shown in Fig. 4, lead to non-symmetric probabil-
ity. This feature is indicative of a critical sample size below which
residual stresses become unbalanced. In the present case, an esti-
mate of the latter is 20 pum, i.e. about the height of Fig. 4. Note also
in Fig. 5 that the fraction of rotational incompatibility that can be
assigned to triple junctions increases with the disclination density
level. High rotational incompatibility values are therefore prefer-
entially localized in triple junctions. As mentioned in Section 4,
plotting P(0s3) in logarithmic scales shows that it obeys a power
law P(633) ~ 633 over an order of magnitude. A power-law relation-
ship is indication of the self-similarity of the dependency: regard-
less of the value of the density, the same scaling exponent n
describes the asymptotic behavior of the probability. Moreover, if
the probability satisfies the above power law, it also obeys the
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Measurement plane

Fig. 3. IF-steel ECAPed, one pass. Shear strain y = 6. The main map represents the scalar disclination measure 0 = /6%; + 03; + 03, (in rad m~2). The inset map shows a close-

up of the wedge disclination density 633 along a grain boundary (in rad m~2). The arrows represent the local Burgers vectors resulting from the dislocation densities (o3, %3),
whose horizontal and vertical components are respectively o3 and o3 (in m~'). The maximum Burgers vector length corresponds to a 1.57 x 10’ m~! dislocation density.
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Fig. 4. Recrystallized titanium, 1% strain, density of wedge disclinations 0s3 (in rad m~2). The arrows represent the Burgers vector resulting from the dislocation densities

(013, 0623) (013 and a3 are the horizontal and vertical components respectively, in m~'). The maximum Burgers vector length corresponds to a 5.19 x 10° m~! dislocation
density. The step size is 0.2 pm. Note the quadrupole to the right of the figure.
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Fig. 5. Probability of occurrence of positive (+) vs. negative (—) wedge disclination density 033 (in rad m~2) in the titanium data set (a 1% subset is shown in Fig. 4). Full circles:

all positive wedges; open circles: all negative wedges; full triangles: positive triple junction wedges; open triangles: negative triple junction wedges. The same data are
shown in linear scales (bottom and left) and logarithmic scales (top and right).
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Fig. 6. Squared residuals between positive and negative wedge densities 033 vs. map reduction factor (triangles). The open and full circles indicate the numbers of grains and
triple junctions in the reduced map. The grains and triple junctions of a map downsized by a factor n are all included in the map reduced at the order (n—1) (n > 2).
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functional equation P(k0s3) ~ k™"P(033) (and vice versa). This
scaling symmetry implies that no characteristic density is involved
in the dependence of the probability. Thus, the power-law relation-
ship suggests scale-invariant spatial correlations between areas
featuring rotational incompatibility. A reasonable conjecture is
that these correlations originate in the long-distance stresses and
couple-stresses associated with the presence of dislocations and
disclinations along grain boundaries. Since the scaling exponent
is smaller than average for triple junctions, the correlations of
the latter decrease less quickly in space. The scale invariance is
preserved with the same scaling exponent when the sample area
is reduced by a factor 64, which suggests, consistent with the
above conjecture, that spatial correlations due to internal stresses
and couple-stresses are still present in much smaller samples.

6. Conclusion

With notable pioneering exceptions, the role of disclinations in
the description of imperfect crystal lattices has probably been
underestimated in the past decades, whether from a modeling or
an experimental point of view. The present recovery of rotational
incompatibility from experimental orientation maps suggests that
the elastic theory of crystal defects, which features disclinations in
addition to dislocations, may be useful for a consistent account of
the network of grain boundaries constitutive of a polycrystal.
Indeed, widespread presence of disclinations at grain boundaries
and triple junctions was found in all materials investigated in the
present work, irrespective of the crystal symmetry, grain size and
loading history. Complex crystal defects combining extended dis-
clination dipoles with dislocation arrays were evidenced. These
dislocation/disclination structures align and form alternating se-
quences along grain boundaries, as suggested by disclination-
based structural units models at a smaller scale.

Only a third of all disclination densities were determined in the
present investigation, due to the planar character of our orienta-
tion maps. We believe that although they would allow a much
more detailed description of the grain boundaries, fully volumetric
maps would not fundamentally contradict the present observa-
tions and conclusions. Indeed, any complementary (yet unknown)
disclination density would add to the presently measured rota-
tional incompatibility. It is also very likely that the remaining dis-
clination densities would be found mainly along grain boundaries,
and would feature a self-screened distribution of dipoles. Even in
their present incomplete state, our observations are pleading for
the additional involvement of disclinations in an elastic theory of
grain boundaries and triple junctions.

The present observations are also a motivation for a dynamic
theory of elasto-plasticity accounting for both dislocations and
disclinations (Fressengeas et al., 2011, 2012). The contribution of
disclinations to plasticity can perhaps be ignored in coarse-grained
polycrystals, where dislocation-mediated plasticity models are
offering widely accepted descriptions. However, dislocation mech-
anisms cannot be invoked anymore in nano-grained polycrystals,
where grain boundary mechanisms are good candidates for an
alternative description of plasticity. Migration of grain boundaries,
grain rotation about grain boundaries, reactions at triple junctions
and dislocation emission/absorption by grain boundaries are
mechanisms that have been proposed in this aim. Their under-
standing may benefit from a description in the framework of a
dynamic elasto-plastic theory of dislocations and disclinations.
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