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Spatial correlation in grain misorientation distribution
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b Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India

Received 25 June 2009; received in revised form 20 July 2009; accepted 20 July 2009
Available online 21 August 2009

Abstract

Grain misorientation was studied in relation to the nearest neighbor’s mutual distance using electron back-scattered diffraction mea-
surements. The misorientation correlation function was defined as the probability density for the occurrence of a certain misorientation
between pairs of grains separated by a certain distance. Scale-invariant spatial correlation between neighbor grains was manifested by a
power law dependence of the preferred misorientation vs. inter-granular distance in various materials after diverse strain paths. The
obtained negative scaling exponents were in the range of �2 ± 0.3 for high-angle grain boundaries. The exponent decreased in the pres-
ence of low-angle grain boundaries or dynamic recrystallization, indicating faster decay of correlations. The correlations vanished in
annealed materials. The results were interpreted in terms of lattice incompatibility and continuity conditions at the interface between
neighboring grains. Grain-size effects on texture development, as well as the implications of such spatial correlations on texture modeling,
were discussed.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Studies of grain–boundary misorientation distributions
commonly use the Mackenzie analysis [1]. In its original
version, the analysis provides the probability density of
misorientation between one grain and all other grains of
a polycrystalline material while the modified version deals
with correlated distribution. In this work only the misori-
entations between one grain and its nearest neighbors are
shown. This representation is very useful in assessing the
grain–boundary character as well as the influence of
grain–boundary properties on mechanical behavior [2]. It
has also been used to generate initial grain orientations
for further simulations of texture development [3]. How-
ever, providing the distribution of misorientations and of
grain–boundary types by their frequency of occurrence

does not exhaust the description of the impact of grain
boundaries on mechanical behavior. Texture development,
recrystallization and many properties like fracture may also
be controlled by the spatial arrangement of the grain–
boundary orientation and misorientation distribution.
For example, it has been suggested that c-axis orientation,
polygonization and recrystallization in polycrystalline ice
samples may be sensitive not only to grain-to-grain misori-
entation but also to spatial aspects such as grain size or
boundary length between neighboring grains [4,5]. How-
ever, a general approach to the problem of defining a quan-
titative measure for the spatial non-uniformity of the
grain–boundary distribution has not been developed so
far. In particular, the Mackenzie distribution overlooks
the potential dependence of grain–boundary misorienta-
tion on spatial aspects. It is therefore unable to reflect pos-
sible correlation between grain–boundary misorientation
and any distance characterizing the pairs of neighboring
grains. Yet, if such a spatial correlation exists, grains can-
not be considered separately and independently. Moreover,
their rotation rates must be connected, which will have a

1359-6454/$36.00 � 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.actamat.2009.07.035

* Corresponding author. Address: Laboratoire de Physique et Méca-
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strong impact on the overall texture development. Indeed,
Winther et al. [6] have shown that the variations in current
grain orientations in a textured material are larger than
those expected on the sole basis of differences in their initial
orientations. These authors suggest that the unexpected
variation is likely to originate in interactions with neigh-
boring grains. Such spatial interactions are not properly
accounted for in the polycrystal plasticity models currently
used for the simulation of texture development, although in
recent times there has been the opinion that this aspect
should be taken into account. Spatial interactions are
certainly not accounted for in approaches using the
conventional Taylor or Sachs assumptions. Self-consistent
models do consider interactions between a homogeneous
grain and an equivalent infinite homogeneous matrix repre-
senting the rest of the material [7], but only in an average
way, with no special consideration to length scales or to
specific neighbor grains. Bolmaro et al. [8] and Tomé
et al. [9] account for the interactions between neighbor
grains in a two-sites self-consistent scheme, by enforcing
the same lattice reorientation and maintaining the grains’
relative misorientation, a condition dubbed “co-rotation”
of neighbor grains. Crystal plasticity finite-element-based
models dedicated to texture development simulation may
account as well for interactions arising from the enforce-
ment of continuity of the elastic spin at grain boundaries
[10,11]. Finally the so-called LAMEL model [12–14] also
accounts for interactions between a grain and its nearest
neighbors by assuming continuity of some components of
the traction and velocity gradient tensors at grain bound-
aries. All of these schemes tend to reduce the intensity of
the simulated textures, in closer agreement with experimen-
tal results. However, the continuity conditions proposed in
Refs. [8–14] clearly lack the understanding of the interac-
tions between dislocation content of grain boundaries,
internal stresses arising from grain–boundary incompatibil-
ity and deformation mechanisms in the neighboring grains.

Recent advances in the electron back-scattered diffrac-
tion technique (EBSD) give access to information such as
the spatial location of grains in the scanned microstructure
area. Therefore, an extension of the original Mackenzie
analysis accounting, on a third axis, for some distance
between grains now becomes feasible at reasonable expense
and a quantitative measure for the spatial non-uniformity
of the grain–boundary distribution is possible to establish.
From this information, the objective of the present paper is
to give evidence for, and characterize quantitatively, the
grain-to-grain interactions. Further, it is to explain their
origin as well as justify the need for “co-rotation type”

schemes in texture modeling. In this aim, the probability
for encountering a grain–boundary misorientation at a
certain inter-granular distance has been systematically
analyzed. Spatial correlations in grain–boundary misorien-
tation distributions have been investigated in diverse
microstructures spanning over a wide range of materials
(pure and alloyed body-centered cubic (bcc), face-centered
cubic (fcc) and hexagonal close packed (hcp) metals), under

various loading conditions. In some deformation modes,
process parameters like temperature and strain rate were
also varied. In addition several heat treatments were per-
formed after deformation in some samples. The rest of
the paper is laid out as follows. In Section 2, the details
of materials and experimental conditions are presented as
well as a comprehensive account of the analysis. The actual
experimental results are shown in Section 3. A discussion
including an analysis of lattice incompatibility across grain
boundaries follows in Section 4, with concluding remarks
in Section 5.

2. Experiments

Table 1 includes the main features of the 21 experimen-
tal studies carried out to provide the background for this
work, with details of the material, the nature of deforma-
tion and the respective experimental conditions. The tests
used pure and alloyed metals, which were selected to be
representative examples of the three main crystallographic
structures, namely fcc, bcc and hcp. The fcc structure was
sampled by nickel, copper, copper–0.3chromium and Cu–
10Zn, the bcc structure by IF steel, and hcp by titanium,
magnesium and Mg–3Al. The samples were deformed by
torsion, tension, compression, symmetric or asymmetric
rolling and equal channel angular extrusion (ECAE). In
some experiments, two of these processes, such as ECAE
and rolling, were used. As a consequence, the tests covered
a wide range of plastic strain. Depending on the deforma-
tion mode, the equivalent von Mises (EQVM) strain
achieved was in the range of 0.36–5.7. The tests were also
conducted in different temperature and strain-rate condi-
tions, from room temperature (RT) to 300 �C and from
10�4 s�1 to 0.3 s�1. After deformation, some of the samples
were annealed for different periods of time to achieve differ-
ent extent of static recrystallization. As a consequence of
these treatments, the grain size of materials under investi-
gation had a range from less than 1 lm in ECAEed mate-
rials to several tens of lm in other materials.

Table 1 is subdivided into four parts. Part 1 contains
samples subjected to deformation only, whereas Part 2
includes samples that were deformed plus annealed. Several
Mg samples in which dynamic recrystallization took place
during the tests have been grouped in the third part. The
last part of the table presents three samples of Cu–0.3Cr
deformed by four ECAE passes, with two of them annealed
at 500 �C for 5 and 60 min.

All samples were systematically examined through elec-
tron back-scattered diffraction (EBSD), using a FEI-SIRI-
ON field emission gun scanning electron microscope
(FEG–SEM). Grain neighbors were identified and listed.
From the measurements, each grain could be characterized
by its orientation in the sample reference frame through its
three Euler angles (u1, u, u2) and, in complement, by its
location in the scanned area. The elementary pixel was cho-
sen to be a square-shaped pixel with a size ranging from
0.05 to 1 lm depending on the grain size. Sets of connected
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and similarly oriented pixels (within a grain tolerance angle
set to 5� for all samples) were grouped to define “grains”.
Thus, the minimum misorientation between two grains is
5�. Grains containing less than 2 pixels were not retained
for the analysis. Although the pixel to pixel misorientation
within a grain is small, the spread of orientation in a grain
can be relatively large, as shown in Fig. 1. Once a grain is
constructed in this manner, it is represented by the spatial
position of its center of gravity in the 2D scan and an ori-
entation that is the average of the orientation of all pixels
constituting the grain. The scanned area was taken as large
as possible in order to obtain satisfactory statistical sam-
pling, with as many indexed grains and pairs of grains as
possible (one pair is defined as a grain and one of its neigh-
bors). The overall indexation rates were quite high and
only the measurement points above 0.1 confidence index
(CI) were considered (CI being a statistical measure of
accuracy in automated indexing, with a scale of 0–1). Table
1 also includes the information about the number of
indexed grains and the number of pairs of grains involved
in each test. Using the Euler angles, and the orthogonal
rotation tensor R mapping the sample reference frame onto

the grain reference frame, the rotation between two neigh-
bor grains gi and gj can be expressed by the tensor

M ¼ Rgi � Rt
gj; ð1Þ

where Rgi and Rgj are the rotation tensors of grains gi and
gj, respectively. The rotation angle hij between grains gi and
gj can be obtained from the tensor M as hij = arccos
[(tr(M) � 1)/2] [1]. Depending on the crystal structure, a
number of symmetry matrices (24 for cubic and 12 for hex-
agonal metals) have to be applied on Rgi and Rgj, to finally
retain the minimum of hij as the misorientation between the
two grains [1]. In addition to misorientation, the distance
Dij = |ri � rj| between the centers of gravity is calculated
for each pair of grains. By complementing the conventional
Mackenzie distribution with this distance information,
we shall define the misorientation correlation function
(MCF) as the probability density f(h, D) for the joint
occurrence of pairs of grains with misorientation h and sep-
arated by distance D. Let us denote by ðh;DÞ the intervals
of length (Dh, DD) centered on the misorientation and dis-
tance values (h, D), and Nð�h;DÞ the number of pairs of

Table 1
Experimental details.

Part No. Material Test Temp.
(�C)

EQVM Strain-
rate
(s�1)

Note Nb. of
grains

Nb. of
pairs

Average
diameter
(lm)

Average
distance
(lm)

1 M1 Cu Torsion RT 5.70 0.3 Recrystallization twins 16,001 29,171 1.67 6.73
M2 Cu Torsion RT 4.66 10�2 Recrystallization twins 17,050 28,301 2.51 5.22
M3 Cu Torsion RT 4.10 10�4 Mostly deformed grains 16,575 27,164 0.63 0.98
M4 Ti Comp./X RT 0.36 3 � 10�4 Deformation twins 2878 7039 6.82 15.3
M5 Ti Comp./Y RT 0.36 3 � 10�4 Deformation twins 845 2162 5.83 10.9
M6 Ni Torsion RT 3.50 10�4 Mostly deformed grains 4206 9357 0.21 0.49
M7 Cu–

10Zn
Torsion RT 4.75 0.3 Mostly deformed grains 8638 20,903 1.02 1.30

M8 Cu–
10Zn

Torsion RT 2.00 10�4 Mostly deformed grains 28,371 71,235 0.54 0.86

M9 Mg–3Al Torsion 250 0.45 10�4 Mostly DRXed grains 2213 5577 4.49 14.0
M10 IF steel ECAE 3Bca 300 3.46 �2 � 10�3 Very small grains 1685 1698 0.21 0.96

2 M11 Ni Rolling RT 0.3 �10�2 Coarse grains, annealed
1200 �C 10 h

185 423 146.2 231.6

M12 Mg ECAE 4Bc 250 4.62 �2.10�3 Annealed 500 �C one hour 1701 2589 23.9 109.3
M13 Mg ECAE

3Bc + rolling (80%)
250 + RT 4.59 �2.10�3 Annealed 500 �C one hour 498 903 53.8 115.5

3 M14 Mg ECAE 4A 250 4.62 �2 � 10�3 Mostly DRXed grains 5224 9497 5.5 8.48
M15 Mg ECAE 4Bc 250 4.62 �2 � 10�3 Mostly DRXed grains 6388 15,701 5.72 7.76
M16 Mg ECAE 4C 250 4.62 �2 � 10�3 Mostly DRXed grains 4865 10,329 6.21 8.84
M17 Mg ECAE

3Bc + rolling (80%)
250 + RT 4.59 �2 � 10�3 Mostly DRXed grains 5328 7060 1.88 3.41

M18 Mg Asymmetric rolling RT �1.68 �10�3 Mostly DRXed grains 7126 16,866 2.1 2.89

4 M19 Cu–
0.3Cr

ECAE 4Bc RT 4.62 �2 � 10�3 Mostly deformed grains 11,065 23,797 0.36 0.74

M20 Cu–
0.3Cr

ECAE 4Bc RT 4.62 �2 � 10�3 Annealed 500 �C 5 mn 3789 9872 0.63 1.18

M21 Cu–
0.3Cr

ECAE 4Bc RT 4.62 �2 � 10�3 Annealed 500 �C 60 mn 5100 12,026 1.22 1.85

a “ECAE 3Bc” meaning 3 ECAE passes in route Bc.
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grains simultaneously encountered in these two intervals. If
N is the total number of grains dealt with in the analysis,
the probability density f(h, D) is defined as

Nð�h;DÞ
N

¼
Z

�h

Z
D

f ðh;DÞdhdD: ð2Þ

It is normalized such thatZ
h�

Z
D�

f ðh;DÞdhdD ¼ 1 ð3Þ

where h� and D� are the largest misorientation and distance
intervals available in the EBSD map, respectively. In prac-
tice, f(h, D) is approximated by the following summation:

f ðh;DÞ � Nð�h;DÞ
NDhDD

¼ 1

NDhDD

XN

i¼1

XN

j¼1

vDðDiÞv�hðhjÞ: ð4Þ

Here use is made of the “indicator” functions vDðDiÞ ¼ 1, if
Di 2 D and vDðDiÞ ¼ 0 otherwise, v�hðhjÞ ¼ 1 if hj 2 �h and
v�hðhjÞ ¼ 0 otherwise. Note that, as it is a probability den-
sity, f ðh;DÞ can be locally larger than one. Although it
has differences with the orientation correlation function
(OCF) introduced by Adams et al. [15], the MCF thus de-
fined is very similar in spirit. We recall that the OCF is the
probability density for the joint occurrence of grain orien-
tation g at a point P and orientation g0 at point P0, where
(P, P0) are separated by a vector r. Hence, the OCF de-
scribes a point-to-point crystal orientation correlation in
real space, whereas the MCF is concerned with a grain-
to-grain misorientation correlation accounting for grain-
to-grain distance in an EBSD map. Also related to the
MCF is the misorientation distribution function (MDF)
defined by Bunge [16]. The MDF describes the probability
that a grain boundary separates grains of a certain misori-
entation. However, any other information on distance than
contiguity through grain boundary is overseen. Providing

more detailed information than the MDF, while posing less
formidable technical challenges than the OCF, the MCF
adequately provides insights into microstructure analysis
and possible spatial correlation in misorientation distribu-
tion. Thorough absence of spatial correlation should be re-
flected by a complete independence of the MCF on the
grain-to-grain distance. The existence of a preferred dis-
tance and a preferred misorientation should translate into
a Gaussian bell-shaped MCF. Spatial correlation arising
from grain-to-grain interactions should give rise to mono-
tonically decreasing MCFs with distance, as will be seen
with more details in the next section. Note that, since all
correlations are expected to vanish at large distances com-
pared with the average grain size, only the nearest neigh-
bors need to be considered in practice.

3. Results and analysis

Fig. 2 shows the MCF in four materials with distinct
microstructural features such as twinning or dynamic
recrystallization. Two limiting effects can be noted at once.
At very short distances, a finite resolution effect is
observed: the MCF drops down to zero, because there is
a finite minimum grain size in the sample. Similarly, a finite
size effect occurs at large distances: clearly, the MCF must
also be zero when the inter-granular distance exceeds the
size of the sample. Between these two extremes, the maps
in Fig. 2a–c for Materials 1, 10 and 4, respectively (see
Table 1) display marked maxima at short distances for spe-
cific misorientation angles, with monotonic decay of the
MCF as the distance increases, which suggests that the pre-
ferred misorientations are mostly met at short inter-granu-
lar distances. Fig. 2a corresponds to a copper sample
(Material 1 in Table 1) deformed in torsion up to �e ¼ 5:7
with an applied strain rate of 0.3 s�1. Two distinct peaks
are seen in the MCF. They correspond to primary and sec-
ondary recrystallization twins. The analysis shows that,
under such conditions, primary recrystallization twins form
in about 45% of the processed pairs of grains and second-
ary recrystallization twins in about 15–20%. The difference
in the descending trend of the peaks suggests that primary
recrystallization twins are twice as large as secondary
twins, consistent with evidence that nucleation of second-
ary twins is constrained by primary twins. Fig. 2b shows
an IF steel sample (Material 10 in Table 1, obtained by
ECAE) with very small average grain size (about 0.2 lm).
Primary recrystallization twins R3 and the CSL R13 are
respectively present in about 15% and 25% of the pairs of
grains investigated, and the MCF extends well beyond
the average grain size. Fig. 2c shows titanium compressed
up to �e ¼ 0:36 (Material 4 in Table 1). The figure shows
that tensile and compressive twins with about the same size
occur more frequently than low-angle grain boundaries
and that they concern larger grains (see also the corre-
sponding EBSD map in Fig. 3). In contrast, Fig. 2d shows
a more even distribution with distance in Material 11
(annealed cold-rolled nickel), which suggests that the pre-
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Fig. 1. Intra-granular misorientations in titanium compressed up to
�e ¼ 0:36 (Material 4 in Table 1), see location of the lines in Fig. 3.
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ferred misorientation, corresponding to primary recrystalli-
zation twins R3, is met more uniformly in grains of all sizes.

The cross-sections of the three-dimensional distribution
maps by constant misorientation planes were analyzed. In
all cases considered in what follows but one explicitly men-
tioned, cross-sections are drawn through the maximum of
the MCF, and the latter is provided as a function of the
inter-granular distance D in the selected plane. In all fig-
ures, the parts of the curves affected by the finite resolution
effects at small and large distances are removed. Let us con-
sider first the samples listed in Part 1 of Table 1 (including
those in Fig. 2abc at preferred misorientations h = 60�, 30�
and h = 90�, respectively), shown in logarithmic scale in
Fig. 4a. In all the 10 cases, the curves can be fitted in power
law form F / d�s with exponent s = 2 ± 0.3. The finite size
effect is clearly in evidence, as several curves bow in and
depart from the linear trend at large distances. Remnants
of the finite resolution effect can also be noticed, with the
curve bowing in at short distances for some materials
(Materials 1: copper in torsion, and 5: titanium in compres-
sion). It was checked that fitting the curves with exponen-
tial or C-function dependence was less convincing, as
illustrated in Fig. 5 for the case of Material 1 (copper in
torsion).

A power-law relationship F / d�s is indication of self-
similarity of the dependency: regardless of the distance,
the same scaling exponent s describes the asymptotic

behavior of F. Moreover, if the MCF satisfies the power
law F / d�s, it also obeys the functional equation
F ðkdÞ ¼ k�sF ðdÞ (and vice versa). This scaling symmetry
implies that no characteristic length, i.e., no particular
inter-granular distance is involved in the spatial
dependence of the MCF. Thus, the power-law relationship
suggests scale-invariant spatial correlation between neigh-
boring grains. It is remarkable that this scaling behavior
is found in materials with all major crystalline structures,
irrespective of a particular loading path. It is valid for all
the range of grain size in the material, from less than
1 lm in ECAEed IF steel (Material 10) to about 50 lm
in titanium (Material 4). In order to ascertain the conjec-
ture, surrogate sets of data were generated by disregistering
grain misorientation and distance: specifically, misorienta-
tion and distance of a particular pair of grains were disso-
ciated and randomly redistributed among the same set of
grains. Clearly, the conventional Mackenzie distribution
remains unaffected in the process, since it does not involve
inter-granular distance. Similarly, crystallographic texture
plots do not reveal any difference between the two data
sets. The spatial dependency of the surrogate distributions
is shown in Fig. 4b in logarithmic scales. It is clearly seen
that the scale-invariant behavior is lost in the surrogate
data. Instead, the misorientation first increases up to a pre-
ferred inter-granular distance, beyond which it decreases. A
comparison with Fig. 4b confirms that the scaling behavior

Fig. 2. Misorientation correlation function (MCF) of copper after torsion (a), IF steel after ECAE (b), titanium after compression (c) and
rolled + annealed nickel (d).
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in Fig. 4a is linked with correct registry of the pairs of
grains, and that on splitting misorientation and inter-gran-
ular distance, or ignoring distances, significant information

is lost. Before considering Part 2 of Table 1, let us mention
in addition that a cross-section of the distribution map for
Material 4 through the local misorientation maximum
ðh ¼ 10�Þ obtained for low-angle grain boundaries (see
Fig. 2c) also displays scale-invariant spatial correlation,
but with larger scaling exponent s ffi 2.5 suggesting faster
decay (not shown in a figure) than for high-angle grain
boundaries. When the misorientation angle is even smaller,
spatial correlation is altogether absent, as seen from the flat
distributions in Fig. 2.

In Part 2 of Table 1, materials listed were deformed and
subsequently annealed (including Material 11 already
shown in Fig. 2d). The cross-sections of the distribution
maps by equal misorientation planes are shown in
Fig. 6a. As could be guessed from Fig. 2d, fitting the curves
with power laws cannot be worked out and, instead, pre-
ferred distances emerge from the analysis. Further,
Fig. 6b shows that surrogate data sets built by randomly
redistributing misorientations and distances among the
pairs of grains as detailed above, does not result in any sig-
nificant change in the curves. Hence, correct registry of the
pairs of grains is indifferent in Fig. 6, and scale-invariant
spatial correlations evidenced in the set of materials in
Fig. 4a are clearly absent from the second set in Fig. 6. It
is certainly tempting to attribute this absence of long dis-
tance correlation to the annealing treatment. Fig. 7a now
presents the MCF vs. distance curves for the samples in
Part 3 of Table 1. In those samples, significant dynamic
recrystallization (DRX) was detected in the course of
straining. The curves bow in at their upper left part, sug-
gesting a quite even distribution at very short distances,
but their decreasing lower right part can be fitted with a
power law with exponent s ffi 3.3. Fig. 7b shows the corre-
sponding curves for the surrogate data: the scaling behav-

Fig. 3. Inverse pole figures of the transverse plane containing the
compression direction in titanium compressed up to �e ¼ 0:36 (Material 4
in Table 1).
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Fig. 4. Misorientation correlation functions (MCF) as function of distance D for deformed samples (samples in Part 1 of Table 1) at preferred
misorientation (a) as measured data and (b) surrogate data.
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ior present in Fig. 7a is clearly lost when randomization of
distance vs. misorientation is plotted. Hence, the figure sug-
gests scale-invariant spatial correlations, although with fas-
ter decay than in “only deformed” materials (Fig. 4a).
Finally, the results for three Cu–0.3%Cr samples (Part 4
of Table 1) deformed up to four passes of ECAE, two of
these samples being subsequently annealed at 500 �C for
5 and 60 min, respectively, are presented in Fig. 8 by iso-
levels of the MCF. Real data are plotted in Fig. 8a–c,
and surrogate data in Fig. 8d–f. Two preferred misorienta-
tions are seen at about 10� and 60� in purely deformed sam-
ples (Fig. 8a) with a maximum occurring at 0.3 lm. Note
that the grain size obtained from the four ECAE passes
amounts to 0.2 lm. After 5 min of annealing, the 10� mis-

orientation maximum vanishes, while the 60� misorienta-
tion peak strongly increases and extends over the range
(0.3–0.7 lm) (Fig. 8b). After annealing for 1 h, the grains
grow by static recrystallization, which levels further the
misorientation peak over the distance range (0.3–1.5 lm).
Surrogate data (Fig. 8d–f) consistently show more homoge-
neous distribution than their real data counterparts. Cross-
sections at 60� misorientation of these iso-level maps are
plotted in Fig. 9a,b. As can be seen from Fig. 9a, scaling
behavior with exponent s � 2 is obtained for the deformed
sample in Fig. 8a, for the whole range of distances. When
the material is annealed, the range of scaling behavior is
degraded at short distances, where misorientation becomes
more homogeneous and a preferred characteristic distance
is seen. However, the slope s � 2 is still perceived on a
shorter range at long distances. Clearly, these last two
curves resemble more and more their surrogate data coun-
terparts (see Fig. 9b). These results are clearly supporting
the notion that annealing lessens spatial correlation in the
misorientation distribution.

4. Discussion

4.1. Effect of measuring method

It might be argued, not unreasonably, that the results in
Section 3 are relative to an EBSD map (a particular image
of the material), but not to the material itself. For example,
the analysis is such that a grain inside the map has no corre-
lation with a grain outside the map, and, hence, there is map-
dependency of the results. However, these effects impact pri-
marily on grains located close to the borders of the map, and
they are of limited concern once the number of grains pro-
cessed in the map is made large enough (usually several thou-
sands in our data sets). Similarly, maps are two-dimensional
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Fig. 5. Comparison of power law, exponential law and gamma law fittings
on copper sample deformed in torsion at 0.3 s�1 (Material 1).
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representations of real materials, which are three-dimen-
sional. Apart from strongly anisotropic morphologies, such
as lamellar or columnar crystals, two-dimensional maps
can, however, be chosen to be representative of the real mate-
rial morphology. There is also some degree of arbitrariness in
the choices made in implementing the analysis. For example,
the distance between grains is defined as the distance between
their centers of gravity and, as already mentioned, the crystal
orientations are defined as averages over their cross-section
with the plane of the map to account for intragranular orien-
tation gradients in defining their misorientation. Although
other options are possible, these choices do not seem unrea-
sonable if crystal orientation gradients are such that individ-

ual grains can be defined at all. It might be argued that we
only account for the interactions of a particular grain with
its nearest neighbors. If spatial correlations are to be uncov-
ered, one may wonder why they should not extend to more
remote grains. However, the origin of the spatial interaction
lies in the material contiguity corresponding to intergrain
connection. Hence, the probability (Eq. (2)) makes more
physical sense when limited to the grain nearest neighbors.
Since the correlations quickly decrease with distance, with
exponent at least of the order of 2, extending the summation
to all pairs of grains would screen short-distance correlations
by overwhelming the statistics with large numbers of uncou-
pled grains.
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Fig. 7. Misorientation correlation functions (MCF) as function of the distance D for samples where significant DRX took place (samples in Part 3 of
Table 1) at preferred misorientation (a) as measured data and (b) surrogate data.

Fig. 8. Iso-levels of the misorientation correlation function (MCF) as function of distance D and misorientation h for Cu–0.3Cr samples (samples in Part 4
of Table 1): (a–c) as measured data and (d–f) surrogate data.
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4.2. Slip transmission, strain incompatibility and polar

dislocations

A striking feature of the results for strained materials
(Part 1 of Table 1) is their apparent “universality”. Indeed,
scale-invariance of spatial correlations is obtained irrespec-
tive of crystal lattice symmetry, deformation process, tem-
perature and strain-rate conditions. These results appear to
be valid for fine-grained as well as coarse-grained materi-
als. Hence, the physical origin for the scale-invariant spa-
tial correlations needs to be generic in nature, i.e. not
specific to any particular material or loading condition.
We conjecture that the constraints on slip transmission at
boundaries and the long-range internal stresses due to lat-
tice incompatibility between distinctly oriented neighbor
grains are responsible for such a mechanism. Further, the
overall intensity of these mechanisms is reflected in the scal-
ing exponent value: the smaller the absolute value of the
scaling exponent, the stronger the coupling mechanisms.
Lattice curvature and “geometrically necessary disloca-
tions” (hereafter referred to as “polar” dislocations) are
associated with such incompatibility. In contrast to polar
dislocations, statistical dislocations can be uniformly dis-
tributed, and their stress fields statistically offset to a net
overall zero contribution to internal stresses. The presence
of polar dislocations at boundaries has been proposed in
the past [17–19]. We recall that their description is based
upon Nye’s dislocation density tensor a [20]. The latter is
defined from the true Burgers vector b of all dislocations
lines threading a surface S of the deformed material config-
uration, surrounded by a contour C known as the Burgers
circuit

b ¼ �
I

C

F�1
e � dx: ð5Þ

In this relation, F�1
e is the inverse elastic transformation

tensor mapping vectors of the deformed configuration onto
vectors of a locally defined elastic-free intermediate config-
uration [21]. Application of Stoke’s relation to Eq. (5)
providesI

C
F�1

e � dx ¼
Z Z

S
curl F�1

e � ndS ð6Þ

which allows defining a as a point wise measure for incom-
patibility through

b ¼
Z Z

S
a � ndS; a ¼ �curl F�1

e : ð7Þ

Because of this incompatibility, the inverse elastic trans-
formation tensor F�1

e is not a gradient. The property holds
also at small strains for the elastic distortion tensor
Ue ffi I� F�1

e , which we shall also consider in the following
for the sake of simplicity. It has an incompatible part, U?e ,
which is solution to the incompatibility equation derived
from Eq. (7) at small strains

curl U?e ¼ a ð8Þ

and a compatible part, Uke , a gradient tensor such that
curl Uke ¼ 0 [22].

In the present context, it is of interest to apply the fun-
damental relations (5) and (6) to situations where the Bur-
gers circuit C bridges two distinct parts (H�, H+) of a
crystalline material across a surface of discontinuity I, typ-
ically a grain boundary. As is well known, conventional
continuum mechanics requires continuity of stress and dis-
placement at the interface I, but incompatible distortion
associated with the presence of polar dislocations is usually
overseen. Following a scheme initiated in Refs. [17,18] and
revisited in Ref. [23] in a dynamical perspective, let us con-
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Fig. 9. Misorientation correlation functions (MCF) as function of distance D at h = 60� for Cu–0.3Cr samples (samples in Part 4 of Table 1): (a) as
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sider the Burgers circuit sketched in Fig. 10. The unit vec-
tor n normal to the interface I is oriented from H� to H+

and l is an arbitrary unit vector lying in the interface.
The Burgers circuit is a rectangle of length L in the direc-
tion of vector l and width h = h� + h+ in the transverse
direction, oriented by the cross product n � l (H� and
H+ have respective width h� and h+). According to rela-
tions (5) and (6), it is seen that

8l 2 I ;
Z Z

S
a � ðn� 1ÞdS ¼ �

I
C

F�1
e � dx: ð9Þ

Let us assume that a continuous distribution of polar dis-
locations exists on both sides of the interface, as well as a sin-
gular distribution of surface dislocations a(I) along the
interface. The limit of continuous fields approaching the
interface I from above is assigned the superscript “+”, and
that of fields approaching I from below the superscript “�”.
Hence, the discontinuity in a field x at the interface is denoted
[x] = x+ � x�. Note that the components of the distribution
a(I) of surface dislocations are expressed as the non-dimen-
sional ratio of a Burgers vector length nb over a segment
length L in the direction of unit vector l, whereas the compo-
nents aij of tensor a have dimension m�1 (Burgers vector
length over unit area m�2). In the limit of the Burgers circuit
collapsing onto point P when h�, h+ tend to zero and L

shrinks along l, relation (9) becomes

8l 2 I ; aðIÞ � n� l ¼ �½F�1
e 	 � l: ð10Þ

Using the tensor cross product A � n defined as:
8l; ðA� nÞt � l ¼ At � l� n, relation (10) can also be written
in the form:

8l 2 I ; ðatðIÞ � nÞt � l ¼ ½F�1
e 	 � l ð11Þ

or, equivalently,

ðatðIÞ � nÞt � n ¼ ½F�1
e 	 � n: ð12Þ

This relation between the dislocation content of the
interface and the jump in the inverse elastic transformation
it accommodates can be thought of as a generalized Frank–
Bilby relation [17,18]. To see this, assume for example that
the elastic deformation be negligible on both sides of the
interface. Hence, the material deforms in a purely visco-
plastic manner and the elastic transformation tensor
reduces to its orthogonal part: Fe ¼ Re; R�1

e ¼ Rt
e, which

represents material rotation. For the sake of simplicity,
we shall further assume infinitesimal rotations. Then
F�1

e ¼ Rt
e ffi I� xe, where xe is the skew-symmetric part

of the elastic distortion tensor Ue, i.e., the elastic spin ten-
sor. Introducing the equivalent elastic spin vector Xe such
that: 8l; xe � l ¼ Xe � l, relation (11) becomes.

8l 2 I ; ðatðIÞ � nÞt � l ¼ �½Xe	 � l: ð13Þ
Eq. (13) provides the dislocation content of the interface
accommodating the discontinuity in the elastic spin, which
essentially achieves the purpose of Frank’s relation. For
example, assume that the jump in elastic spin belongs to
the interface, say: ½Xe	 ¼ h n� l. Then ½Xe	 � l ¼

h ðn� lÞ � l ¼ �h n, and the left-hand side of Eq. (13) is
ðatðIÞ � nÞt � l ¼ h n, or equivalently: aðIÞ � l� n ¼ h n.
Defining the singular dislocation density aðIÞ as: aðIÞ ¼
ðnb=LÞb
 t, where B ¼ ðnb=LÞb is the Burgers vector and
t the line vector (b and t being unit vectors), it is seen from
the last equation that b = n, t = l � n and L/n = b/h.
Hence, the surface dislocation density aðIÞ describes the
interface I as a tilt boundary, composed of edge disloca-
tions with line direction aligned with the elastic spin and
Burgers vector normal to the interface. The well-known
relation L/n = b/h describes the spacing of dislocations in
the tilt boundary. In such a model, the interface is viewed
as having no width, and any jump in rotation between
the neighboring crystals can be accommodated by a singu-
lar dislocation distribution, by just choosing the appropri-
ate dislocation spacing according to Frank’s relation.
Hence, this model does not predict any correlation in the
rotation of neighboring crystals. In contrast, if the intent
is to describe the grain boundary as a region of finite width,
the notion of a singular dislocation density must be surren-
dered, and the distribution of the dislocation density in the
interface area must be considered as continuous in both
crystals H� and H+ (as well as other field variables). In
the context of such a continuous model for grain bound-
aries, the generalized Frank–Bilby relation (12) becomes

½F�1
e 	 � n ¼ 0 ð14Þ

or equivalently

8l 2 I ; ½F�1
e 	 � l ¼ 0: ð15Þ

Whereas in the singular representation of a grain bound-
ary, there is no material continuity along the interface,
Eq. (15) implies “tangential continuity” across the inter-
face. Indeed, the inverse elastic mapping of any tangential
material vector of the deformed configuration must lead to
the same material vector on both sides of the interface.
Using the standard elastic–plastic decomposition of the
transformation gradient tensor F ¼ Fe � Fp [24], the tangen-
tial continuity condition ((14) and (15)) on F�1

e can be com-
plemented by a reverse condition on Fp. Indeed, continuity
of the displacement is required by continuum mechanics,

I 

C 

l 

n 
h+

h-

P ln×

S 

L

H +

H −

Fig. 10. Sketch of interface I between sub-domains (H�, H+), with normal
vector n. The unit vector l is an arbitrary vector in the interface. The
Burgers circuit C surrounds surface S bridging over the interface I, and
oriented by the cross-product n � l normal to surface S.
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which implies that the inverse transformation gradient F�1

satisfies tangential continuity along the interface

½F�1	 � n ¼ 0 or 8l 2 I ; ½F�1	 � l ¼ 0 ð16Þ
a condition commonly referred to as Hadamard’s kine-
matic compatibility condition [25]. Hence, the jump ½F�1

e 	
in the elastic transformation tensor is offset by a jump
[Fp] in the plastic transformation tensor satisfying the
relation

8l 2 I ; ½F�1
e 	 � l ¼ ½Fp	 � F�1 � lþ Fp � ½F�1	 � l ¼ 0 ð17Þ

or, substituting Eq. (16) in Eq. (17),

8l0 2 I0; ½Fp	 � l0 ¼ 0; l0 ¼ F�1 � l: ð18Þ
Here (l0, I0) are the images of (l, I) in the reference config-
uration, mapped from (l, I) through the inverse transfor-
mation gradient. If n0 is a vector normal to the interface
I0 in the reference configuration, Eq. (18) is equivalent to

½Fp	 � n0 ¼ 0: ð19Þ
In order to understand the implications of the result

(Eqs. (14)–(19)), it may be useful to reconsider the example
of a purely viscoplastic material submitted to infinitesimal
transformations. Eq. (13), which is relevant to that case,
now becomes

8l 2 I ; ½Xe	 � l ¼ 0 ð20Þ
which implies

½Xe	 ¼ 0: ð21Þ
Hence, continuity of the elastic spin is required across

the interface. This condition can also be retrieved from
the dynamic continuity condition set out in Ref. [23] (see
Refs. [26,27]). Thus, although a singular model is eligible,
a more accurate (continuous) description of the grain
boundary implies the existence of spatial correlations
between neighboring crystals, because limiting values of
the elastic spin from the two sides of the surface of discon-
tinuity are required to be equal. When material elasticity is
included in the description, the correlation in crystal rota-
tion is less stringent than the strict co-rotation implied by
Eq. (21). Indeed, still assuming infinitesimal transforma-
tions, Eq. (15) becomes in that case

Ue � n ¼ 0; 8l 2 I ; ½Xe	 � l ¼ �½ee	 � l: ð22Þ
Projecting onto the orthogonal frame (e1 = l, e2 = n � l,
e3 = n), one obtains in component form

½Xe
1	 ¼ ½ee

23	; ½X
e
2	 ¼ ½ee

31	; ½X
e
3	 ¼ ½ee

12	: ð23Þ

Here, ee is the symmetric part of the elastic distortion
tensor Ue, i.e., the elastic deformation tensor. Like Ue, ee

has an incompatible part, e?e , due to the presence of polar
dislocations, and a compatible part, eke , which contributes
to the solution of the elasto-plastic boundary value prob-
lem. Due to the presence of e?e , Eqs. (22) and (23) show that
the jump in elastic spin across the grain boundary is depen-
dent on the presence of polar dislocations in this area. Such

a result comes in full support of the conjecture presented
up front in this section. It shows that a consistent theory
of texture development needs to have non-local character,
and that the latter derives from lattice incompatibility in
the grain–boundary region.

Gradients in the elastic spin are in direct relation with
the polar dislocation content, as testified by the following
relation [21]:

grad Xe ¼ curl et
e � at � 1

2
trðaÞI

� �
: ð24Þ

Hence, the above conjecture can be experimentally ver-
ified by investigating intragranular lattice rotation gradi-
ents, particularly in the vicinity of grain boundaries. The
procedure is the very same as that utilized in Section 3
for grain-to-grain misorientation. An example is presented
in Fig. 1 for a large grain in Material 4 (compressed tita-
nium). Two oriented lines were selected (see Fig. 3) along
which misorientation with respect to the dot-marked refer-
ence point was calculated. Along Line 1, the misorientation
remains nearly constant (less than 2–3� variation) on the
first 50 lm then strongly increases to finally reach 28� close
to the opposite grain boundary. On Line 2, larger
fluctuations (4–5�) are seen in the first 120 lm then, similar
to Line 1, the misorientation increases by about 20� in
20 lm close to the grain boundary. These strong gradients
are indication of the presence of a large density of polar
dislocations in the neighborhood of grain boundaries,
which is supporting the views expressed earlier. Note that
the length scale over which the influence of the tangential
continuity conditions (14), (22) and (23) reaches into the
material is not implied by these conditions. The scaling
laws uncovered in Section 3 as well as the above measure-
ments show that it extends well into the first neighbor
grains. Similar measurements described in Ref. [28] also
support these views.

4.3. Incidental dislocation boundaries

On average, the incidental dislocation boundaries
(IDBs), which separate dislocation cells and develop small
misorientation angles, were not considered in the present
paper, because, as already mentioned, the minimum mis-
orientation angle was set to a much larger value: 5�. How-
ever, the relative absence of correlation noticed above for
small misorientation angles is consistent with their proper-
ties. Indeed, IDBs are thought to form by statistical trap-
ping of glide dislocations, a mechanism not involving the
lattice incompatibility associated with the presence of polar
dislocations [29–31]. Further, plots of scaled IDB distribu-
tions reveal the existence of a universally preferred misori-
entation [29–31], a property at odds with the scale-
invariance shown here for high-angle boundaries. Note
that the higher-angle boundaries between dislocation cells
referred to as “geometrically necessary boundaries” do
not convincingly show the same statistical features as IDBs
[29–31], which is again consistent with the present under-
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standing. Finally, there is no obstacle to extending the
present analysis to dislocation cell boundaries by setting
the minimum misorientation angle to a value smaller
than 5�.

4.4. Effect of grain refinement during large plastic strain

Severe plastic deformation (SPD) not only leads to the
formation of dislocation cells and IDBs but usually results
in the fragmentation of the grains that initially compose the
polycrystal. At extreme strains, an outcome of grain refine-
ment can be the production of ultra-fine-grained polycrys-
tals with exceptional mechanical properties (see a review of
SPD processes in Ref. [32]). ECAE is one of the most
promising techniques that are used for this purpose. Large
part of our database was obtained by using this technique
and substantial amount of grain size reduction is believed
to have taken place in those tests.

Grain refinement can be looked at as a result of lattice
incompatibility developing in the initial grains. The grad-
ual increase in misorientation across initial sub-grain
boundaries can be attributed to pile-ups of the polar dis-
locations that produce lattice curvature in this area. It is
plastic strain which drives the progressive transformation
of low-angle sub-grain boundaries into high-angle bound-
aries. As shown above, this process changes dramatically
the MCF, whose character shifts from uncorrelated
to spatially correlated. While it cannot be excluded
that the new grains keep the misorientation of their
parent grains during fragmentation, polar dislocations
are still present in their new boundary area, with the
consequences described in Section 4.2. The continuity
constraints lead to an orientational relationship between
the new grains. This interaction is expected to be stron-
ger near to the grain boundary, which suggests that the
orientational constraint should be more stringent in
smaller grains.

4.5. Effect of annealing: low-angle boundaries

Since one of the most prominent effects of annealing is
to relax internal stresses, the above conjecture is also con-
firmed a contrario by the absence of spatial correlations
apparent in Fig. 6 in samples annealed after straining. Fur-
ther support to the conjecture is obtained from Fig. 9,
which provides evidence for the decay of spatial correla-
tions and the shortening of the scaling range when the
annealing treatment is made stronger. Additional argu-
ments in support of the conjecture can be made from the
faster decay (or absence) of spatial correlations in the case
of low-angle grain boundaries and in samples undergoing
dynamic recrystallization (DRX) (Fig. 7). Indeed, low-
angle grain boundaries are considered as being associated
with low intensity of internal stresses, and one of the pri-
mary effects of DRX is to lower this intensity level in the
recrystallized grains by erasing incompatible lattice rota-
tion gradients.

4.6. Grain-size dependence

The presence of polar dislocations at grain boundaries
as a result of constraints on grain-to-grain slip transmission
has been recognized as being of primary significance in the
interpretation of the grain-size dependence of the flow
stress, i.e. the Hall–Petch effect. Indeed, boundaries act as
strong barriers to dislocation motion, as evidenced by dis-
location pile-ups. The propagation of plastic slip activity
across grain boundaries by activation of sources in neigh-
bor grains is also thought to be related to the internal stres-
ses originating from these dislocation pile-ups, a
phenomenon commonly used to explain the propagation
of Lüders bands. Interactions between polar dislocations
and grain boundaries are even more complex when bound-
aries are set into motion through twinning or dynamic
recrystallization. It is to be mentioned here that power
law statistics have also been shown to characterize the
scale-invariant self-organization of plastic activity in ice
polycrystals, as reflected by the associated acoustic emis-
sion [33]. In this paper, the property was ascribed to spatial
correlations in relation with long-range interactions and
incompatible lattice distortion. Although the average grain
size sets an internal length scale reflecting a barrier to dis-
location motion, the authors have shown that the self-orga-
nized character of plastic activity extends towards length
scales much larger than the average grain size [33], which
comes in support of the present findings.

4.7. Effect on texture strength

By appending the elastic spin continuity condition (20)
to the framework of a finite deformation crystal viscoplas-
tic finite element setting, Mach et al. [26] have predicted
texture development in rolling simulations for face-cen-
tered cubic (fcc) metals. Their results reproduce the trend
already alluded to in the present paper to reduced intensity
of the predicted crystallographic texture with respect to
Taylor-type or viscoplastic self-consistent type predictions,
and match more closely the experimental data. Including
incompatible lattice distortion in the continuity conditions,
as done in Eqs. (21) and (22), might lead to an additional
improvement of the predictions. Another direct conse-
quence of the grain-to-grain spatial correlation evidenced
in this paper is that the strength of the crystallographic tex-
ture should be higher in coarse-grained than in fine-grained
materials. Indeed, the large value of the probability for
encountering a specific boundary pattern at short inter-
granular distances limits the propensity of the straining
path to generate marked textures in fine-grained materials.
Experimental evidence of a grain size effect on texture
strength can be found in recent papers [34,35]. Jain et al.
[34] show that the texture strength index increases with
grain size in magnesium alloy AZ31B after annealing
(Table 1, Ref. [34]) and suggest that this issue is critical
in the grain-size dependence of the twin volume fraction
after tensile loading. Park and Szpunar [35] provide similar
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information for the cold rolling textures developed in two
samples of electrical steel: Fig. 2 of Ref. [35] shows a much
stronger texture component in the large grained steel than
in the fine-grained steel. These authors also suggest that
this difference can be considered as being inherited from
the texture difference between the two steels in the annealed
state. Similar observation was reported by Anderson et al.
[36] while examining rolling texture of Cu/Nb polycrys-
talline multilayers with variable thicknesses, where the
Kurdjumov–Sachs orientation relationship was valid
across the fcc/bcc interface. The experimental rolling tex-
tures indicated that the Kurdjumov–Sachs relation was lost
for the “thick” layers, while it was preserved to a large
degree for the “thin” layers, which is consistent with the
trends implied by our scaling relations.

5. Conclusion

Scaling laws have been uncovered in the distribution of
grain misorientation vs. inter-granular distance in various
materials under diverse loading paths corresponding to dif-
ferent processing methods. In the absence of annealing, the
scaling exponent is of the order of s = 2 ± 0.3 for high-
angle grain boundaries, however, it increases (in absolute
value) for low-angle grain boundaries, or under dynamic
recrystallization. Sequential annealing after deformation
leads to uncorrelated distributions. These results argue for
inter-granular scale-free spatial correlations through con-
straints on slip transmission across boundaries, long-range
internal stresses due to strain incompatibility between dis-
tinctly oriented neighbor grains, and for lattice curvature
associated with the presence of polar dislocations at grain
boundaries. In the framework of a field dislocation theory,
such correlation assumes the form of tangential continuity
conditions on the inverse elastic transformation tensor or
on the plastic transformation tensor, in the deformed and
reference configurations respectively. In an infinitesimal
transformation setting, these conditions provide the jump
in the elastic spin vector across the boundary as a function
of the jump in the incompatible elastic distortion.

Implications of the scale-invariant law on misorienta-
tion vs. inter-granular distance and grain-to-grain continu-
ity conditions are the trend to milder texture development,
and the size dependence of the latter. The coarser the grain
structure, the stronger is the texture induced by the strain
path. Several experimental verifications of the effect were
provided; however, a more systematic investigation is still
desirable. From the point of view of modeling, our results
imply that a consistent theory of texture development
needs to have non-local character, since limiting values of
elastic spin on both sides of a grain boundary should have
a relationship.
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Appendix. Supplementary material

A Fortran program for the calculation of the Misorien-
tation Correlation Function can be found at www.benoit-
beausir.e3b.org.
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[21] Kröner E. Continuum theory of defects in physics of defects. In:

Balian R et al., editors. Les Houches, Session XXXV, 1980. North
Holland Publishing Company; 1981.

[22] Acharya A. J Mech Phys Solids 2001;49:761.
[23] Acharya A. Philos Mag 2007;87:1349.
[24] Lee EH. J Appl Phys 1969;36:1.
[25] Hadamard J. Lec�ons sur la propagation des ondes et les équations de
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