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Abstract

The ideal positions and fibres of hexagonal close packed (hcp) crystals subjected to simple shear are explored in orientation space for
the first time using the viscoplastic full constraints crystal plasticity approach with the help of an orientation persistence factor developed
earlier for face-centred cubic crystals. Five ideal fibres are identified; these are named B, P, Y and C1–C2, and correspond to a high activ-
ity of Æaæ type slip (B, P and Y) as well as pyramidal Æc + aæ (C1–C2). Although the numerical examples are given for the case of mag-
nesium, the main features are the same for other hcp crystals. The characteristics of the three-dimensional lattice rotation fields are also
investigated in Euler space. It has been found that the rotation field is asymmetric around the ideal fibres: convergent on one side and
divergent on the other. The main drift of orientations is in the direction of the material spin. Some simulation results obtained with the
Taylor viscoplastic polycrystal code for simple shear of magnesium are interpreted with the help of the persistence characteristics of the
rotation field.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Metals with hexagonal crystal structure (e.g. titanium
alloys, magnesium alloys, beryllium and zirconium) are
now the focus of interest for technical applications and aca-
demic research. Depending on their properties, these met-
als are used in very different applications (aeronautic,
transport, nuclear). Their mechanical properties have been
extensively studied to determine the possibilities and limits
of shape forming. Large plastic strains, however, involve
the development of plastic anisotropy which can be espe-
cially strong in hexagonal close packed (hcp) polycrystals.
This is why it is important to know the ideal crystallo-
graphic textures that develop at large strains. These tex-
tures have been studied intensively for compression,
tension, plane strain compression and rolling. They are
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not known, however, under simple shear or torsion condi-
tions. The aim of the present work is to determine the ideal
texture components that develop during simple shear of
hcp polycrystals and examine their persistence characteris-
tics in orientation space.

The technique employed in the present work is similar to
the one proposed by Tóth et al. [1] for the face centred
cubic (fcc) case. It is based on the lattice spin X which is
calculated from a crystal plasticity model. From X, a so-
called persistence parameter is defined

P g; _e
� �

¼ ln
1

Xðg; _eÞ
���

���=�_e
; ð1Þ

where g denotes the orientation g = (u1,u,u2) (here g is a
vector quantity with u1, u, u2 being the three Euler angles
[2]), _e is the strain rate tensor and �_e is the applied von Mises
equivalent strain rate. When the lattice spin is small, i.e.
when grain rotation is small, P is high (characteristic of
an ideal orientation). This parameter proved to be very use-
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ful in the determination of the ideal stable components of
the crystallographic texture [3–8]. Nevertheless, for a com-
plete understanding of the evolution of the texture, one has
to examine also the velocity rotation field _g ¼ _u1; _u; _u2ð Þ as
well as the divergence quantity throughout the entire orien-
tation space. The latter is defined by

div _gð Þ ¼ o _u1

ou1

þ o _u
ou
þ o _u2

ou2

: ð2Þ

Several such studies have been carried out in which the
rotation field has been examined [1,3–8]. One of the most
interesting features found about the rotation field in Euler
space under simple shear of fcc and body centred cubic
(bcc) crystals is that, for all ideal orientations, div _gð Þ ¼ 0,
i.e. the ideal fibres are situated between the positive and
negative regions of the divergence [4,7]. This particularity
of the rotation field distinguishes the simple shear deforma-
tion mode from other deformations (e.g. rolling, compres-
sion or tension) and readily explains the observed texture
variations in fcc and bcc materials. One of the purposes
of the present work is to find out similar features for the
hexagonal case.

Hexagonal crystals have fewer symmetries than cubic;
only a sixfold symmetry around their c-axis in contrast to
24 in. cubic. Another difference is the operating slip systems,
which can be grouped into families. These slip systems are

basal 0001f g 1�210
� �

, prismatic 1�100
� �

11�20
� �

, pyrami-
dal Æaæ 10�11

� �
�12�10
� �

, pyramidal Æc + aæ type A 10�11
� �

2�1�1�3
� �

and pyramidal Æc + aæ type B 2�1�12
� �

�2113
� �

.

Their activity depends mostly on the c/a ratio of the unit
cell. Usually, more than one slip system family needs to be
activated because there are families that contain less than
five independent slip systems (i.e. basal and prismatic),
which is the minimum number to accommodate a general
prescribed deformation. The critical resolved shear stresses
(crss) at which they are activated are not always known.
They can be obtained by experiments on single crystals
[9,10] or by simulating the evolution of the texture [11–16].

In the present work, we consider the case of magnesium,
for different sets of relative crss values (in this work, because
of viscoplastic slip, crss means the reference stress, not the
critical resolved shear stress, as defined in Eq. (4) below).
The results obtained will also be qualitatively valid for other
hcp structures; nevertheless, for exact results, the analyses
should be repeated. First the ideal orientations will be deter-
mined by an analysis of the persistence parameter in Euler
space, and then the rotation field together with the diver-
gence will be examined. Finally, simulations will be per-
formed for torsion of magnesium in comparison with
experiments using the Taylor viscoplastic polycrystal model.

2. Fundamental relations

A simple shear loading is imposed on the hexagonal
structure defined by the following constant velocity
gradient:
L ¼ _c

0 1 0

0 0 0

0 0 0

0
B@

1
CA: ð3Þ

In order to obtain a von-Mises equivalent strain rate of
1.0 s�1, the value of _c was

ffiffiffi
3
p

s�1 in the calculations. In
the following, our orientation stability analysis is re-
stricted to the Taylor model for which L is the same for
any grain.

In the orientation stability study, the full constraints
viscoplastic crystal plasticity model was employed with
rate-dependent plastic slip of the form [17]

ss;f ¼ sf
0sgn _cs;f


 � _cs;f

_c0

����
����
m

¼ sf
0

_cs;f

_c0

_cs;f

_c0

����
����
m�1

: ð4Þ

Here ss,f is the resolved shear stress in the slip system in-
dexed by s of the family indexed by f, _cs;f is the slip rate,
the sf

0 value is the reference stress level (at which the slip
rate is _c0), and m is the strain rate sensitivity index. The ref-
erence shear rate _c0 is supposed to be the same for all slip
systems. Eq. (4) has been widely used in crystal plasticity
simulations (e.g. [1,3–8,11–21]). The slip systems are
grouped into ‘‘families’’ for which purpose the index f is
used. The main families in hexagonal structures are the ba-
sal, prismatic and pyramidal slips. It is assumed here that
the reference shear stress sf

0 is the same within a given slip
system family, but can be differ from one family to another.
The behaviour of hcp metals is strongly dependent on the
values of the reference shear stresses sf

0 and on m. In the
present investigation, several sets of reference shear stresses
and of strain rate sensitivity index m are considered. Here-
after, the reference stresses of the slip system families will
be referred in the following order: ½sbasal

0 ; sprism
0 ; spyr:hai

0 ;
spyr:hcþai=A

0 ; spyr:hcþai=B
0 �.

In the orientation stability study, it is necessary to dis-
tinguish among three types of rotations (elastic distortions
are neglected). They are b, the material spin, which is the
skew-symmetric part of the velocity gradient L relative to
the fixed reference system

bij ¼
Lij � Lji

2
: ð5Þ

x, the plastic spin, which is the skew-symmetric part of the
velocity gradient corresponding to plastic slip only, with re-
spect to the fixed reference system. It is given by [22,23]

xij ¼
Xnf

f¼1

Xnsf

s¼1

ms;f
ij � ms;f

ji

2
_cs;f : ð6Þ

Finally, the lattice spin X, which is the rate of rotation of
the crystallographic directions with respect to the fixed ref-
erence system. (The index nf denotes the total number of
families and nsf is the number of slip systems in family f.)

The following relation exists between the above-defined
spin quantities [24]:

X ¼ b� x: ð7Þ
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Each orientation g is defined by the three Euler angles
(u1,u,u2). Using a crystal plasticity model, the correspond-
ing rotation velocity field _g ¼ _u1; _u; _u2ð Þ can be calculated
for any g. The components of the velocity _g can be ob-
tained as follows [25,26]:

_u1 ¼ X12 � u2 cos u;

_u ¼ X32 cos u1 þ X13 sin u1;

_u2 ¼ X32 sin u1 � X13 cos u1ð Þ= sin u;

ð8Þ

where the lattice spin X is defined with respect to the sam-
ple axes. These relations can be obtained from

_T ¼ XT ; ð9Þ

where T is the transformation matrix going from the sam-
ple to the crystal axes. (The T matrix expresses the same
transformation as the g vector, they are, however, mathe-
matically different quantities; this is the reason why the ori-
entation change is calculated from Eq. (9).)

3. Maps of orientation persistence

The stability of an orientation is examined here with the
help of the persistence parameter P defined by Eq. (1). In
that relation, the norm of the lattice spin is given by

jXj ¼ X2
32 þ X2

31 þ X2
12


 �1=2
: ð10Þ

With the help of relations Eq. (8), P can be rewritten as

P ¼ ln
�_effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_u2
1 þ _u2 þ _u2

2 þ 2 _u1 _u2 cos u
p : ð11Þ

As can be seen in this relation, P depends on cosu, which is
a consequence of the distortion of Euler space in the u
coordinate [27]. �_e will be taken as 1.0 s�1 in the calculation
of P, but actually P is independent of the applied strain
rate because the _u1, _u and _u2 quantities are proportional
to the magnitude of the applied strain rate. (Only the stress
level changes when the strain rate is changed; see Eq. (4).)

For the case of a hexagonal crystal structure and simple
shear, the symmetries (sixfold around the c-axis and two-
fold around the axis defined as normal to the shear axis
and the shear plane axis) permit the smallest possible rep-
resentative Euler space volume to be defined as follows:

u1 ¼ 0! 180�; u ¼ 0! 90�; u2 ¼ 0! 60�: ð12Þ
For the definition of the Euler angles, the Cartesian refer-
ence system is fixed to the unit cell of the hexagonal crystal
structure so that the axes x1, x2 and x3 are parallel to the
axes ½10�10�; ½�1 2�10�; ½000 1�, respectively. In order to map
the P parameter in orientation space, the space defined
by Eq. (12) was subdivided into a grid of the size 3� ·
3� · 3�. The orientation stability parameter P was calcu-
lated using the Taylor model at each grid point (36,000
points for the full representation). P Depends not only
on the strain rate sensitivity m but also on the values of
the reference stresses sf

0 .
Fig. 1 shows the isovalue-maps of P in the restrained
Euler space for six sets of the relative reference stresses
[1,30,30,30,30] (Fig. 1a), [30,1,30,30,30] (Fig. 1b), [30,
30,1,30,30] (Fig. 1c), [30,30,30,1,30] (Fig. 1d), [30,30,30,
30,1] (Fig. 1e), and [1,1,1,1,1] (Fig. 1f), for a strain rate
sensitivity value of m = 0.2, which corresponds to a temper-
ature of about 250 �C in Mg (an experimentally determined
value m = 0.15 at 200 �C in AZ31 has been reported [14]).
The colours indicate the magnitude of P, which is high for
red and low for blue. The above selection of the relative ref-
erence stress values reveals the existence of five ideal fibres.
The skeleton lines of the fibres were traced in orientation
space and plotted in the (0002) and ð10�10Þ pole figures
in Fig. 2. They are named and defined as follows:

1. The B fibre (0�, 90�, 0–60�); basal plane k shear plane.
2. The P fibre (0�, 0–90�, 30�); haik shear direction. The
end-orientation of this fibre is called P1, its appearance
in the u = 0� section is redundant along several lines
for two reasons: (i) because of the singularity of Euler
space at u = 0�; (ii) it appears also at different locations
because of the hexagonal crystal symmetry.
3. The Y fibre (0�, 30�, 0–60�); this is a ‘c’ fibre, meaning
that the fibre axis is the c-axis which is rotated towards
the shear plane by 30�.
4–5. The C1 fibre (60�, 90�, 0–60�) and C2 fibre (120�,
90�, 0–60�); these are also ‘c’ fibres where the c-axis is
first rotated 90� in the shear direction, then ±30� in
the shear plane direction.

The B, C1, C2 and Y fibres appear as simple points in the
(0002) pole figure, while the P fibre is a line in both the
(0002) and ð10�10Þ pole figures. This is a consequence of
the perpendicularity of the two pole figure projections.

Note that, because of the sample symmetry correspond-
ing to simple shear, P is the same on the u1 = 0� and
u1 = 180� planes of Euler space, so fibres P, B and Y are
repeated at these locations. Similarly, as a consequence of
the hexagonal crystal symmetry, the u2 = 0 and u2 = 60�
planes are identical in orientation space.

The intensity of the orientation stability parameter P is
not the same for the different fibres as P depends very much
on the relative reference stress values. As an example,
Fig. 1f shows a P-map when the reference stresses are all
equal to 1.0. For this special case (which is not realistic
in hcp materials as well-characterized hcp metals do not
have equal critical stresses on the different modes) only
three fibres – the B and C1–C2 as well as a single orienta-
tion, the P1 (30�, 0�, 0�) – are significant. This case demon-
strates the effect of geometrical differences of the slip
system families on their activities during simple shear.

The above analysis could be repeated with a more ‘‘real-
istic’’ combination of the reference stresses sf

0 . Although
the persistence parameter depends quite strongly on the rel-
ative strengths of the slip system families, the position of an
ideal fibre does not depend on the reference stresses values;
it is exclusively determined by the geometry of the crystal,



Fig. 1. Isovalues of orientation stability parameter P in the restrained Euler space for the following sets of reference stresses: (a) [1,30,30,30,30], (b)
[30,1,30,30,30], (c) [30,30,1,30,30], (d) [30,30,30,1,30], (e) [30,30,30,30,1] and (f) [1,1,1,1,1].
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i.e., by the c/a ratio. Nevertheless, the actual combination
of the reference stresses depends on the material, so the tex-
ture development should depend on the selected combina-
tion of the crss values. According to the study of Agnew
et al. [14] for magnesium AZ31, the set of [1,8,8,6,6] gave
the best comparison between simulated and experimental
textures using the self-consistent viscoplastic model
(VPSC).

Fig. 3 presents the ideal positions for the set of reference
stresses [1, 8,8,6,6]. Two fibres appear: the B and the P, the
latter with low intensity. This case is not far from that pre-
sented in Fig. 1a because of the relatively low value of sbasal

0 .
For a better comprehension of the contribution of the

different slip system families to the stability of the ideal
components, the relative activity of the slip system families
is investigated along the fibres. The activity Af of family f is
defined by the ratio of the sum of the absolute value of the
slips cf of family f with respect to the total glides cg in the
grain:

Af ¼ cf

cg
¼

P
s
jcs;f j

P
f

P
s
jcs;f j : ð13Þ

Fig. 4 presents the slip activity Af by families along the fi-
bres identified above for the set of crss [1,8,8,6,6] for
m = 0.2. The pair of fibres C1–C2 is plotted in the same fig-
ures as their activity is identical. As can be seen in Fig. 4,
only basal slip is activated along the B fibre. For all the
other four fibres, all slip system families are active along
the fibres. When looking at the slip directions only, one



Fig. 3. Map of the orientation stability parameter P in Euler space for Mg
using the set of reference stresses [1,8,8,6,6].
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can find out that along the P and Y fibres the most active
slip modes involve only Æaæ type dislocations. Along the
C1–C2 fibres the most active slip systems produce disloca-
tions with Æc + aæ type Burgers vectors.

The orientation stability parameter P depends not only
on the orientation but also on the strain rate sensitivity
index m. Fig. 5 shows the evolution of P along all fibres
for the set of reference stresses [1, 8,8,6,6] for two values
of m: 0.2 (a) and 0.1 (b). As can be seen in Fig. 5, the lower
the m, the higher the P value. For example, for the B fibre,
the orientation stability parameter P increases 35-fold
between m = 1 and m = 0.01 (not shown in the figure). It
should also be noted that P is not constant on a fibre.
For example, the P fibre shows in general a low stability
but its stability is very high where it joins the B fibre (at
the /1 = 0�, / = 90�, /2 = 30� position).

For the present selected set of reference stresses, the
most stable is the B fibre followed by the P. The other fibres
show little stability; along the Y fibre, even negative values
of P can occur. The value P = 0.69 when the plastic spin
vanishes (i.e. when the lattice spin is equal to the rigid body
spin (see Eq. (7)) is also indicated on Fig. 5 by the dotted
lines. When P is higher than this value, the rotation rate
of the grains is lower than the rigid body spin and vice
versa. It is clear that in orientation regions where grains
rotate nearly with the rigid body spin, significant orienta-
tion accumulations cannot happen, so the C1–C2, the Y
and part of the P fibre are not expected to be significant
in the development of the orientation distribution function
(ODF) of Mg.

One can estimate the smallest possible P value from the
lattice spin and the rigid body spin. A maximum value of
the lattice spin can occur when the plastic spin is equal to
the rigid body spin but opposite to it (see Eq. (7)). (This sit-
uation can be readily shown when single slip takes place in
a grain for a specific orientation.) One then obtains:
Pmin = �0.549.

In order to understand the behaviour of certain features
of the evolution of the texture, it is useful to study the case
in which an orientation just rotates with the rigid body spin
under simple shear conditions. Such a case happens, for
example, for simple shear of any rotated cube oriented
grain (i.e. for which u = 0�) with an fcc crystal structure
[19]. According to Eq. (7), when the plastic spin is zero,
the rate of lattice rotation is equal to the rigid body spin.
For any orientation for a given imposed strain rate, the
scalar rates of the rigid body j _bj and lattice spins j _xj can
be defined as follows:

_b
�� �� ¼ _b2

32 þ _b2
31 þ _b2

12

� �1=2

; _xj j ¼ _x2
32 þ _x2

31 þ _x2
12


 �1=2
:

ð14Þ

In the following, we are interested in finding the locations
in Euler space where the plastic spin is small with respect
to the rigid body spin; a ratio of 10 is considered:
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_xj j ¼ _b
�� ��=10: ð15Þ

Fig. 6 shows the obtained result with the help of an iso-
value-map in Euler space. Seven such fibres are identified:
the b1 fibre (15�, 0–15�, 0�), the b2 fibre (45�, 75–90�, 0–
60�), the b3 fibre (135�, 75–90�, 0–60�), the b4 fibre (30�,
82–90�, 0–60�), the b5 fibre (60�, 82–90�, 0–60�), the b6 fibre
(120�, 82–90�, 0–60�), and the b7 fibre (150�, 82–90�, 0–
60�). As can be seen in Fig. 6, the plastic spin is not zero
for any rotated u = 0� orientation in the hcp crystals (the
case which is equivalent to the rotated cube in fcc); it is
so just for specific orientations, contrary to the case of
the fcc structure.
4. Rotation field

In the preceding sections, we discussed the stability of a
single crystal during plastic deformation. When a polycrys-
tal is examined, many grains can be near the ideal orienta-
tions and the main question is the evolution of the
orientation density f(g) (i.e. the ODF). f(g) depends mainly
on the characteristics of the rotation field in the vicinity of
g. The above analysis gave information about the velocity
field _g using only a well-defined scalar quantity (P). Now,
for a polycrystal, we are interested in the orientation flow
in Euler space. For this purpose, the vector rotation field
_g ¼ _u1; _u; _u2ð Þ and the divergence quantity (Eq. (2)) have
to be examined. These two quantities determine the evolu-
tion of the ODF given by the continuity equation of texture
development [25,26]. In the ‘‘Lagrangian’’ formulation,
when g is not fixed, we have

_f =f þ _u cot uþ div _gð Þ ¼ 0: ð16Þ
At a fixed point of Euler space (Eulerian description), the
continuity equation becomes

_f =f

 �

g
þ _u cot uþ div _gð Þ þ _g gradðln f Þ ¼ 0: ð17Þ

Note that for _g ¼ 0 – the case of ideal orientations – Eqs.
(16) and (17) are equivalent. The rate of change of the
ODF intensity at a given orientation is characterized by

_f =f

 �

g
, which can be deduced from Eq. (17). For relatively

weak textures, the term _g gradðln f Þ can be neglected for
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two reasons. First, _g is small near the ideal orientations;
second, the grad(ln f) vector is also small if the texture is
weak.

From the viewpoint of texture formation, a texture com-
ponent at orientation g is considered to be stable during
deformation as long as

_g ¼ _u1; _u; _u2ð Þ ¼ 0 and _f =f

 �

g
> 0: ð18Þ

Fig. 7 shows both _g and div _gð Þ in four sections of the re-
straint Euler space; /2 = 0�, / = 90�, /2 = 30�, and
/1 = 0�. The divergence is calculated at grid points of Euler
space separated by 1�, while the _g vector is on a grid of 5�.
These four sections elucidate the characteristics around all
the fibres identified above. Blue regions represent the loca-
tions where div _gð Þ < 0, while the regions where div _gð Þ > 0
are identified by yellow and red. The arrows are the projec-
tions of the _g vectors in the sections of the Euler space con-
sidered. The relative reference stresses are [1,8,8,6,6], and
m is 0.2.

In accordance with the definition of the orientation sta-
bility parameter (Eq. (11)), the rotation velocity _g shows a
local minimum near the ideal orientations. _g is actually
very small near the B and P fibres, meaning that these
two fibres are the predominant ones during deformation.
For all orientations, _u1 is negative and significantly larger
than _uk k or _u2k k. This means that the ‘‘global’’ movement
of grains during simple shear deformation is a negative
rotation around axis 3, i.e. rotation in the direction of
shear. This rotation is represented by the X12 component
of the lattice spin. When the plastic spin is small, the lattice
rotation rate is X12 = 0.5 s�1 for a shear rate of 1.0 s�1.
Assuming a hypothetical situation where this situation
holds for large strains, the lattice rotation can accumulate
up to 57.29� during a total simple shear of c = 2.

Now the obtained results are analysed around the ideal
fibres for positive simple shear using Fig. 7.

B Fibre: Grain orientations rotate towards the B fibre
along the rotation vectors �~u1 and ~u; there is no orien-
tation move along the ~u2 direction in the vicinity of the
B fibre. The further an orientation is from the B fibre,
the higher its rotation rate is.
P Fibre: Orientations rotate towards P along the rota-
tion directions �~u1 and �~u2. Both the B and P fibres
are located along a line div _gð Þ ¼ 0. This is not the case
for the Y fibre; it can be seen in Fig. 7d that the diver-
gence is positive in the lower part (0 6 u2 < 30�) and
negative along its upper part (30� < u2 6 60�). The rota-
tion rate is also quite high. Similarly, the C1 fibre is
located in a zone where the divergence is negative, while
the C2 fibre is located in a positive divergence area (see
Fig. 7b). For a negative shear direction, the situation is
reversed for the C1 and C2 fibres. Considering the large



Fig. 7. Lattice rotation fields ( _gÞ and divergences (div _gð ÞÞ in the case of simple shear in the restraint Euler space. The relative reference stresses are
[1,8,8,6,6] and the strain rate sensitivity is equal to 0.2. (a), (b), (c) and (d) correspond to sections /2 = 0�, / = 90�, /2 = 30� and /1 = 0�, respectively.
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rotation vectors shown around these fibres compared to
the B and P, together with the characteristics of the
divergence, it can be again concluded that no significant
ODF intensities would develop around the Y and C1–C2

fibres in polycrystalline Mg.

5. Texture evolution in polycrystalline magnesium

The ideal orientations and the characteristics of the
rotation field were identified in the preceding sections.
The results of that analysis can be very helpful in the inter-
pretation of the evolution of the crystallographic texture.
For this purpose, two kinds of initial texture were consid-
ered: first a typical initial texture of an extruded Mg alloy,
then a random distribution of grain orientations.

5.1. Experimental textures

Torsion tests were carried out on solid bar samples
obtained from an extruded AZ71 bar (composition:
7 wt.% Al, 1 wt.% Zn, balance Mg) at 250 �C. The gauge
length was 38 mm and the diameter of the bar was 6
mm. The torsion tests were conducted under ‘free-end’ con-
ditions, i.e. with axial freedom of motion of the bars. A
small amount of shortening (up to �2%) was recorded dur-
ing torsion. The samples broke at a surface shear deforma-
tion of about 1.2. The initial as well as the deformation
textures were measured by the orientation imaging (EBSD)
technique. The indexation quality was 80% in the non-
deformed sample, while it was 40% in the deformed sample.
This might appear to be a low indexation result, however,
each grain was resolved. Moreover, further X-ray measure-
ments have quantitatively confirmed the EBSD measure-
ments. The texture in the deformed sample was measured
by EBSD within a 500 lm · 1500 lm surface parallel to
the longitudinal axis of the sample in a zone where the
average shear deformation was 0.9. The thus-obtained tex-
tures are presented in Fig. 8a and b in the form of pole fig-
ures where the projection is done on the r plane (r is the
normal of the projection). As can be seen, the initial texture
is a h1 0�10ikz fibre texture with moderate strength. After a
shear strain of 0.9, the texture is mainly rotated around the
r axis in the direction of shear with an angle of about 30�.
Some small intensity values are present near the C1 and C2

fibres; however, the intensity is less than random.

5.2. Texture modelling

5.2.1. Model parameters

The Taylor viscoplastic crystal plasticity model was
used in which the textures were represented by 2000 crys-
tal orientations. The relative reference stress values and
the m-value were the same in the polycrystal model as
in the rotation field analysis above, i.e. [1, 8,8,6,6]. m is
relatively high because the torsion tests were conducted
at 250 �C [14]. Hardening was not considered in the sim-
ulations as the ratio of the maximum flow stress/yield



Fig. 8. Texture evolution during torsion of magnesium: (a) initial texture;
(b) experimental texture, c = 0.9; (c) simulated texture, c = 0.9, [1,8,8,6,6]
and (d) simulated texture, c = 4.0, [1,8,8,6,6].

Fig. 9. The initial texture displayed in two views of the ODF.
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stress remained under 1.5 in the experiment, and there is
not enough information available in the literature about
hardening of this material to incorporate a suitable micro-
scopic hardening law into the simulations (although
numerically it would be readily possible). It is also true
that the use of any kind of homothetic hardening law
would not have any impact on the texture evolution as
the Taylor model is used. The deformation of a material
element in the torsion test was approximated by simple
shear in the simulations in small increments (the shear
acting in the z plane in the positive h direction), i.e. the
small axial strain was neglected (for simulation of the
axial contraction, see Refs. [28,29]).
5.2.2. Texture development in torsion of the initially textured

Mg bar

Fig. 8c shows the simulated texture at the same shear
strain as the experiment (c = 0.9). As can be seen, the main
feature of the experimental texture, i.e. the rotation around
the r axis, is qualitatively reproduced. The predicted rota-
tion angle is 35�. If one compares this value to the rigid
body rotation during the simple shear of 0.9, it is much less
than that: 26�. At the same time, the experimental texture
also seems to be rotated more than the rigid body rotation:
by 30�. It is actually surprising that the overall rotation of
the texture is more than the rigid body rotation.

In order to understand the large rotations observed
above, the ODF of the initial texture is displayed in
Fig. 9 in a 3-D presentation by showing the ODF from
two views. As can be seen, the initial texture is such that
all orientations are situated in the central part of the
ODF. In these regions, however, the lattice rotation rate
is high (see Fig. 7a and c). At many places, the lattice spin
is even higher than the rigid body spin (the latter is indi-
cated by an arrow above Fig. 7a). It is thus understandable



Fig. 10. Simulation of texture evolution during simple shear obtained by
the viscoplastic Taylor model. Two thousand randomly oriented grains,
reference stresses [1,8,8,6,6] and m = 0.2.
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that the accumulated experimental rotation of the texture is
larger than the rigid rotation. Nevertheless, the strain is
quite low (due to the limited plasticity of Mg in torsion),
so the main ideal fibre (the B fibre) cannot be reached in
a shear of 0.9. Even if the texture would rotate constantly
by the rigid body rotation (which cannot be valid as the
rotation of orientations approaching the ideal fibre slow
down, see Fig. 4a and c), the strain needed would be
c = 3.14 (90� rotation). Such large strains can be reached
by ECAE in multiple passes, and the interpretation of the
corresponding simulations could be readily done using
the above-presented stability maps and rotation field anal-
ysis. It can therefore be concluded that a general nearly
rigid rotation of the texture takes place during a shear of
0.9 because of the nature of the initial texture and the rota-
tion field.

At a large strain, c = 4, the simulated texture in Fig. 8d
shows that the B fibre appears, but in a slightly rotated
position. More details about the evolution of the B fibre
will be discussed in the following section.

5.2.3. Texture development in simple shear of an initially
random texture in Mg

Two thousand orientations were used in the simulations
with a random initial texture. Fig. 10 shows the obtained
textures at increasing strains: c = 1.2, 2.1, 3.6 and 8.1 in
(0002) and ð10�10Þ pole figures. The positions of the B, P
and C1–C2 ideal fibres are also indicated in the pole figures.
For the relatively small strain, c = 1.2, the B and C1–C2

fibres are formed, the P fibre does not appear (and is absent
even at larger strains). The presence of the C1 and C2 is sur-
prising at first sight because it was found in the preceding
section that these two fibres cannot be significant. Actually,
they are not significant because their intensity is less than
random. They are present mainly for the simple reason that
the lattice rotation rate around them is nearly the same as
the rigid body spin; thus, they represent a part of the initial
random texture, which is simply rotated by the rigid body
rotation. This particularity of the rotation field is very visi-
ble in Fig. 6, where the C1 fibre is surrounded by the b2, b4

and b5, while the C2 is located within the b3, b6 and b7 fibres,
which are the locations of nearly rigid body spin rotations.
There are, nevertheless, some differences in intensities
between the C1 and C2 fibres; the C1 is stronger than C2.
This can be explained with the help of the divergence map
presented in Fig. 7, according to which the divergence is
negative around C1 but positive around C2.

With further straining, c = 2.1, the C1–C2 fibres weaken
below the random value, while the B fibre persists with a
non-uniform intensity distribution along the fibre. Finally,
the C1–C2 fibres completely disappear at c = 3.6. Concern-
ing the behaviour of the B fibre, it develops in a slightly
rotated position with respect to its ideal position, opposite
to the direction of shear. This ‘‘tilt’’ decreases as a function
of strain and becomes positive at very large strains. At the
same time, the intensity along the B fibre becomes more
uniform.
According to the above-presented texture development
of an initially random texture, only the B fibre is important
in polycrystalline Mg. The behaviour of the B can be ana-
lysed with the help of the rotation field characteristics pre-
sented in Sections 3 and 4 above. In a random initial
texture, there are grain orientations everywhere, so orienta-
tions near B will approach the ideal position even at the
onset of straining. However, they only approach from the
right-hand side in the orientation space presented in
Fig. 7a and c, coming from the negative divergence region.
Therefore, they accumulate on the right side of the B ideal
fibre in the ODF. In the pole figure, that position corre-
sponds to the left side of the ideal fibre, so the B fibre com-
ponent appears in slightly rotated position opposite to the
applied shear. This ‘‘tilt’’ is about 7� at c = 1.2 in Fig. 10
and decreases as a function of shear. The tilt even becomes
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positive (i.e. in the sense of shear) at very large strains. Sim-
ilar results were obtained in Ref. [30] for an initially ran-
dom texture in simple shear for various values of m for
another set of reference stresses [1, 2,2,3,3].

It should be noted here that the positive tilt is an effect of
the strain rate sensitivity of slip as it reduces as the strain
rate sensitivity index m is decreased (see Ref. [30]). If one
extrapolates to m = 0, the positive tilt does not appear at
all. This tilt is possible because of the non-zero rotation
of the grains even in the ideal position. As is shown in
Fig. 5, the stability parameter P does not exceed 10 for
the ideal positions when m = 0.2, so grain orientations
can actually even cross the ideal position. It should be
noted that the negative tilt develops also when m
approaches zero because it is caused by the one-sided con-
vergent nature of the rotation field, not by the large m

value.

6. Conclusions

In the present work, the ideal positions of textures that
develop under simple shear deformation are examined for
the hexagonal crystal structure. For this purpose, the so-
called orientation persistence parameter was employed,
which can be obtained from the simulated lattice spin.
The rotation field and the divergence quantity were also
examined in orientation space in order to understand the
behaviour of the ideal orientations. Experimental results
were presented for the torsion of polycrystalline Mg–7Al–
Zn alloy; these were modelled with the help of the Taylor
viscoplastic model. From the results obtained, the follow-
ing conclusions can be made:

1. With the help of the persistence parameter P, all possible
ideal orientations are identified for hexagonal crystal
textures in simple shear. They are all fibers, which are
named B, P, Y, C1 and C2.

2. For the case of Mg, with the set of references stress val-
ues [1, 8,8,6,6], the orientation persistence was exam-
ined in Euler space. It was found that only the B fibre
is significant in Mg.

3. Simulations for the texture development in an initially
random texture using the Taylor viscoplastic model
revealed tilts of the ideal fibres from their ideal positions
in simple shear. These tilts are opposite to the shear
(negative) at lower strain, and become positive at large
strains. They are caused by the convergent/divergent
nature of the rotation field around the ideal fibres and
by the non-zero lattice spin, even in the ideal positions,
due to the rate sensitivity of slip.
4. The experimental textures in simple shear of initially
h10�10ikz textured Mg rotate slightly more than the
rigid body rotation at a shear of 0.9 due to the specific
rotation field in the initial texture. The simulation with
the Taylor model also gives a higher rotation value of
the texture with respect to the rigid body rotation.
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