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Abstract

In the first part of this paper the stress and strain-rate response of hexagonal crystal structures are
examined when slip is viscoplastic according to a power law. The stress and strain-rate equi-potential
surfaces are constructed and discussed as a function of the strain-rate sensitivity index m. The second
part of this paper deals with the case of linear viscous slip; i.e., for the case when m is equal to one. A
simple analytic solution is presented to obtain the deviatoric stress state for a given strain-rate. It is
shown that the plastic spin is not zero for m = 1 in hexagonal crystal structures, contrary to the cubic
case where the plastic spin vanishes. In addition, the rate of texture evolution in simple shear of a
magnesium polycrystal is examined as a function of m.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and basic equations

A common problem that often arises in crystal plasticity is to obtain the stress state that
corresponds to a given imposed strain-rate. In time-independent plasticity and when the
Schmid law is used, the solution can be obtained using the maximum work principle with
the help of the vertices of the Bishop and Hill yield surface (Bishop and Hill, 1951). The
procedure consists of calculating the plastic power corresponding to 56 stress states (for
0749-6419/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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fcc crystal structures) defined by the vertices, and then locating the vertex that corresponds
to the maximum plastic power. The procedure fails, however, when the imposed strain-
rate vector is perpendicular to a hyperplane of the yield surface, because several vertices
give the same maximum plastic power. This is referred to as the stress ambiguity problem
in rate-independent plasticity. When the strain-rate is not perpendicular to any of the
hyperplanes, another ambiguity problem arises which concerns the selection of the active
slip systems as there are too many (6 or 8 at the vertices). These problems do not occur
with rate-dependent plastic slip with a constitutive law of the form (Hutchinson, 1976):

ss;f ¼ sf
0 sgnð _cs;f Þ _cs;f

_c0

����
����
m

¼ sf
0

_cs;f

_c0

_cs;f

_c0

����
����
m�1

: ð1Þ

Here ss,f is the resolved shear stress in the slip system indexed by s of the family indexed
by f ; _cs;f is the slip rate, the sf

0 value is the reference stress level (at which the slip rate is
_c0), and m is the strain-rate sensitivity index. The reference shear rate _c0 is supposed to
be constant for all slip systems. The slip systems are grouped into ‘‘families’’ for which
purpose the index f will be used hereafter. The main families in hexagonal structures are
the basal, prismatic and pyramidal slips. It is assumed here that the reference shear
stress sf

0 is the same for a given slip system family, but can be different from one family
to another. Eq. (1) has been widely used in crystal plasticity simulations (e.g., Asaro and
Needleman, 1985; Tóth et al., 1988, 1990; Neale et al., 1990; Van der Giessen et al.,
1992).

The properties of the stress potential function that corresponds to Eq. (1) have been
analysed by Tóth et al. (1988) for cubic structures, where it has been shown that the
stress potential surfaces are smooth, convex, and more and more rounded when the m

value is increased. The first part of this paper presents a similar analysis for hexagonal
structures, where the potentials depend not only on the m value but also on the relative
strengths of the different slip system families as well as on the hexagonal lattice param-
eter c/a.

In viscoplastic slip, in order to obtain the stress state that corresponds to a given strain-
rate, the solution of a strongly nonlinear system of equations is necessary. The basic equa-
tions are as follows:

By neglecting elastic distortion, the macroscopic Eulerian strain-rate components are
obtained from the crystallographic slips using

_eij ¼
1

2

Xnf

f¼1

Xnsf

s¼1

ðms;f
ij þ ms;f

ji Þ _cs;f ; ð2Þ

where nsf is the number of slip systems in family f and ms;f
ij is the Schmid orientation ma-

trix of slip system s:

ms;f
ij ¼ bs;f

i ns;f
j ; ð3Þ

with bs,f and ns,f being the slip direction and slip plane normal unit vectors, respectively.
The total number of families is nf. The resolved shear stress is related to the Cauchy stress
tensor r as follows:

ss;f ¼ rijm
s;f
ij ; ð4Þ

which permits us to write Eq. (2), with the help of Eq. (1), in the form:



B. Beausir et al. / International Journal of Plasticity 23 (2007) 227–243 229
_eij ¼
_c0

2

Xnf

f¼1

1

ðsf
0Þ

1=m

Xnsf

s¼1

ms;f
ij þ ms;f

ji

� �
rklm

s;f
kl

� �
rpqms;f

pq

��� ���1
m�1

: ð5Þ

(Unless otherwise stated, summation is implied for the repeated indices throughout this
paper.) Only the deviatoric part S of the stress state r affects the resolved shear stress, so r

can replaced by S in Eq. (5). In order to simplify Eq. (5), 5-component vector quantities
are introduced. For this purpose, Lequeu’s notation is adopted here (Lequeu et al., 1987):

S ¼ ðS22 � S11Þffiffiffi
2
p ;

ffiffiffi
3
pffiffiffi

2
p S33;

ffiffiffi
2
p

S23;
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p
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p

S12

 !
; ð6Þ
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With the above definitions, Eq. (5) can be written as:

_ei ¼ _c0

Xnf

f¼1

1

ðsf
0Þ

1=m

Xnsf

s¼1

Ms;f
i ðSkMs;f

k ÞjSlM
s;f
l j

1
m�1
: ð9Þ

This relation represents five equations for the five independent components of the strain-
rate vector _e. The unknowns are the components of the deviatoric stress vector S. Eq. (9) is
strongly nonlinear because the m value is usually small for typical applications. It is com-
monly solved in an iterative way with the help of the Newton–Raphson scheme. Such an
iteration scheme requires a good initial guess. For this purpose, the solution from the lin-
ear case m = 1 can be employed. This case of linear viscous slip is treated in the second
part of the paper. This case is also important in creep. Dislocation creep can be well de-
scribed by Eq. (1) when m = 1 (Vreeland, 1968):

ss;f ¼ sf
0

_cs;f

_c0

: ð10Þ

Superplastic deformation also corresponds to large m values, approaching even the
value of 1.0. Although superplastic deformation is believed to be achieved by grain bound-
ary sliding in combination with dislocation glide, the former mechanism, being strongly
dependent on diffusion, naturally leads to a high amount of strain-rate sensitivity. Grain
boundary sliding is also believed to be the cause of the randomization of texture, as
observed during superplastic deformation. However, it is possible that the role of grain
boundary sliding is over-emphasized in some cases. In such cases, the high value of m

would indeed be due to the behaviour of dislocations, and Eq. (10) applies; this would also
explain the slow or lack of development of deformation textures, as high values of m cor-
respond to a low or zero plastic spin.

Note that the above constitutive equation corresponds to a very special case of crystal
viscoplasticity. Situations when it can be applied correspond to high temperature deforma-
tion or creep. In most practical applications, the strain-rate sensitivity index m is very
small; in certain cases it may even be negligible from the engineering point of view. How-
ever, the limiting case m = 1 of viscoplasticity could provide useful insight for understand-
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ing certain trends of crystal behaviour. Eq. (10) is also useful as an initial numerical guess
for solving the highly nonlinear system of equations in viscoplasticity when m� 1.

The subject of the second part of the paper is to show that, for cubic and hexagonal
crystal systems, the solution for the linear viscous case is completely analytic. Not even
a linear system of equations has to be solved (Eq. (9) with m = 1) to obtain the stress
response of the material for a given strain-rate. The equi-potential surfaces are also exam-
ined both in stress and in strain-rate spaces.

Finally, the lattice rotations are examined for the linear viscous case. Although
the plastic spin has already been shown to be zero for fcc crystal structures when
m = 1 (Tóth et al., 1988), the case for hexagonal crystal structures has not yet been
examined.

2. The stress and strain-rate potential functions

As there is no threshold yield stress for strain-rate sensitive slip of the type described by
Eq. (1), a ‘‘yield surface’’ in the classical sense does not exist. However, the behaviour of
the crystal can still be visualized with the help of a stress potential function. Such an anal-
ysis has been carried out for fcc single crystals by Tóth et al. (1988). The shapes of the yield
potentials give direct information about the plastic anisotropy of the crystal. There also
exists a dual function to the stress potential, which is referred to as the strain-rate potential
function (Van Houtte, 2002). The latter is very useful when known analytically as it per-
mits us to readily obtain the stress state for any given applied strain-rate. Such an analysis
has not yet been carried out for hcp structures.

An equi-potential is defined such that the plastic power _W is constant along its surface;
i.e.,

_W ¼ Si _ei ¼
Xnf

f¼1

Xnsf

s¼1

ss;f _cs;f ¼ C: ð11Þ

With the help of Eq. (1), _W becomes:

_W ¼
Xnf

f¼1

_c0

ðsf
0Þ

1=m

Xnsf

s¼1

jMs;f
i Sij

1
mþ1 ¼ C: ð12Þ

The stress potential function f(S) is defined so that the plastic strain-rate (in vector
form) is normal to it:

_ei ¼
of ðSÞ
oSi

: ð13Þ

Under this condition, f(S) can be expressed as:

f ðSÞ ¼ m
mþ 1

Xnf

f¼1

_c0

ðsf
0Þ

1=m

Xnsf

s¼1

jMs;f
i Sij

1
mþ1 ¼ C: ð14Þ

Similarly, the strain-rate potential function hð_eÞ is such that the stress state (in vector
form) is perpendicular to it:

Si ¼
ohð_eÞ
o_ei

: ð15Þ
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Unfortunately, an analytic form for hð_eÞ cannot be given (except for m = 1, see below),
although it would be very useful to obtain the stress state from the imposed strain-rate
without any numerical iteration. Nevertheless, the equi-potential surfaces of hð_eÞ can be
plotted numerically as the strain-rate can always be computed from Eq. (9) from the stress
state corresponding to the stress-potential surface. The two functions f(S) and hð_eÞ are
dual potentials. The potential hð_eÞ has been examined by Fortunier (1989) for the cubic
structure in rate-independent slip, when the Schmid law can be used. In this work hð_eÞ
is computed numerically for different m values. The limiting case m = 0 can be approxi-
mated by using very low m values.

The equi-potentials were calculated in the crystal reference system for hexagonal
crystal structures (c/a = 1.624, magnesium) with the following available slip system
families: basal, prismatic, pyramidal Æaæ, pyramidal Æc + aæ/A and Æc + aæ/B. A series
of m values were considered: m = 1, 0.5, 0.2, 0.1, 0.05 and 0 for the stress potentials
as well as m = 1, 0.5, 0.2, 0.1, 0.05, 0.005 for the strain-rate potentials. The constant
C in the expression of f(S) (Eq. (14)) was chosen as: C ¼ sbasal

0 _c0m=ðmþ 1Þ. Here
sbasal

0 _c0 is a plastic power that would correspond to the power in single slip within
one basal slip system when the resolved shear stress is equal to the reference strength
sbasal

0 and the slip rate is _c0 ¼ 1:0 s�1. All obtained stress components are expressed in
units of sbasal

0 . The Cartesian reference system was defined as follows:
x1k½10�10�; x2k½�12�1 0�; x3k½0001�.

Figs. 1 and 2 show the stress and strain-rate equi-potentials for two different relative
strengths of the available five slip system families; in Fig. 1, all slip systems are considered
to have the same strength as the basal slip; in Fig. 2, the following relative strengths were

used: sprism:
0 ¼ spyr:hai

0 ¼ 8sbasal
0 ; spyr:hcþai=A

0 ¼ spyr:hcþai=B
0 ¼ 6sbasal

0 . (A complete list of the slip
systems can be found in Table 1.) The stress potentials for the limiting m = 0 case were plot-
ted using the Schmid criterion. They are analogous to the Bishop and Hill surface known
for fcc materials. It has already been shown in Tóth et al. (1988) that the stress potential
surfaces converge to the Bishop and Hill yield surface as m! 0 in the fcc crystal structure.
That result can also be readily transposed to hcp crystal structures in viscoplastic slip.

As can be seen in Figs. 1 and 2, the shapes of the equi-potential surfaces become more
and more rounded as the m value is increased and, as expected, sharp vertices appear in the
limiting case of rate-independent behaviour (m = 0). For this limiting case, the active slip
system families are indicated along the stress potential surfaces in Figs. 1 and 2. Because of
the reduced symmetries in hcp structures as compared to the fcc case, the potential func-
tions also display fewer symmetries. This is why not all the potentials exhibit a mirror sym-
metry with respect to the stress coordinate axes. The different sections differ also in the
active slip system families. For example, only basal slip is active in the S4 � S3 section,
while in the S2 � S1 section, basal slip is eliminated. This effect is sharply affected by
the choice of the relative strengths of the slip systems: when non-basal slips are much more
difficult (Fig. 2), prismatic slip is completely eliminated in the sections presented. This
effect depends, of course, on the hcp lattice parameter, too; when the c/a ratio is increased,
the pyramidal type systems become less inclined to the c-axis which leads to reduced
resolved shear stress, for example, for a tensile loading parallel to the c-axis. By varying
the c/a ratio, the Ms;f

i values change. Table 1 shows the Ms;f
i values for each slip system

as a function of the c/a parameter (named ca). The stress levels – that is, the sizes of the
potentials – also depend on the relative strengths of the slip system families (except the
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Fig. 1. Stress f(S) (top) and strain-rate hð_eÞ (bottom) equi-potentials in hexagonal crystal structures (c/a = 1.624, magnesium) for different sections in Lequeu space,
for different values of m (for f(S): m = 1, 0.5, 0.2, 0.1, 0.05, 0, for hð_eÞ: m = 1, 0.5, 0.2, 0.1, 0.05, 0.005). For f(S), the smallest surface corresponds to m = 1, while for
hð_eÞ, the order is opposite. The relative strengths of all slip system families are equal. Stress values are in units of the slip system strength. Strain-rate values are in s�1.
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Fig. 2. Equi-potentials f(S) (top) and hð_eÞ (bottom) in hexagonal structures (magnesium c/a = 1.624) for different sections in Lequeu space, for different values of m

(for f(S): m = 1, 0.5, 0.2, 0.1, 0.05, 0, for hð_eÞ, m = 1, 0.5, 0.2, 0.1, 0.05, 0.005). For f(S), the smallest surface corresponds to m = 1, while for hð_eÞ, the order is
opposite. The relative strengths of the slip systems are: sprism:

0 ¼ spyr:hai
0 ¼ 8sbasal

0 ; spyr:hcþai=A
0 ¼ spyr:hcþai=B

0 ¼ 4sbasal
0 . Stress values are normalized with respect to the

reference strength of basal slip. Strain-rate values are in s�1.
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Table 1
Schmid tensors Ms;f

i for hexagonal structure in five dimensions

Family f Systems s Ms;f
1 Ms;f

2 Ms;f
3 Ms;f

4 Ms;f
5 Division factor

Basal ð0001Þ½1�210� 0 0 �1 0 0
ffiffiffi
2
p

ð0001Þ½2110� 0 0 �1/2
ffiffiffi
3
p

=2 0
ð0001Þ½11�20� 0 0 1/2

ffiffiffi
3
p

=2 0

Prismatic ð10�10Þ½�12�10� 0 0 0 0 1
ffiffiffi
2
p

ð1�100Þ½11�20� �
ffiffiffi
3
p

=2 0 0 0 �1/2
ð0�110Þ½2�1�10�

ffiffiffi
3
p

=2 0 0 0 �1/2

Pyramidal Æaæ ð10�11Þ½�12�10� 0 0
ffiffiffi
3
p

=ca 0 2
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 3=c2
a

p
ð1�101Þ½11�20� �

ffiffiffi
3
p

0
ffiffiffi
3
p

=2ca 3/2ca �1
ð0�111Þ½2�1�10�

ffiffiffi
3
p

0 �
ffiffiffi
3
p

=2ca 3/2ca �1
ð�1011Þ½1�210� 0 0 �

ffiffiffi
3
p

=ca 0 2
ð�1101Þ½�1�120� �

ffiffiffi
3
p

0 �
ffiffiffi
3
p

=2ca �3/2ca �1
ð01�11Þ½�2110�

ffiffiffi
3
p

0
ffiffiffi
3
p

=2ca �3/2ca �1

Pyramidal
Æc + aæ/A

ð10�11Þ½2�1�1�3� �
ffiffiffi
3
p

�3 �
ffiffiffi
3
p

=2ca �ð4c2
a � 3Þ=2ca �1

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 3=c2
a

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

a

p
ð10�11Þ½11�2�3� �

ffiffiffi
3
p

�3
ffiffiffi
3
p

=2ca �ð4c2
a � 3Þ=2ca 1

ð01�11Þ½11�2�3� 0 �3 �
ffiffiffi
3
p
ð2c2

a � 1Þ=2ca �ð2c2
a � 3Þ=2ca 2

ð01�11Þ½�12�1�3�
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3
p

�3 �
ffiffiffi
3
p
ðc2

a � 1Þ=ca �ca 1
ð�1101Þ½�12�1�3�

ffiffiffi
3
p

�3 �
ffiffiffi
3
p
ðc2

a � 1Þ=ca ca �1
ð�1101Þ½�211�3� 0 �3 �
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3
p
ð2c2

a � 1Þ=2ca ð2c2
a � 3Þ=2ca �2

ð�1011Þ½�211�3�
ffiffiffi
3
p

�3
ffiffiffi
3
p

=2ca ð4c2
a � 3Þ=2ca �1

ð�1011Þ½�1�12�3� �
ffiffiffi
3
p

�3 �
ffiffiffi
3
p

=2ca ð4c2
a � 3Þ=2ca 1

ð0�111Þ½�1�12�3� 0 �3
ffiffiffi
3
p
ð2c2

a � 1Þ=2ca ð2c2
a � 3Þ=2ca 2

ð0�111Þ½1�21�3�
ffiffiffi
3
p

�3
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3
p
ðc2

a � 1Þ=ca ca 1
ð1�101Þ½�1�21�3�
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3
p

�3
ffiffiffi
3
p
ðc2
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ffiffiffi
3
p
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3
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3
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3
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2
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a
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a

p
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3
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a � 2Þ
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3
p
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3
p
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3
p
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3
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3
p
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a � 1Þ=ca �
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3
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3
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3
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a � 2Þ
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3
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3
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ffiffiffi
3
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3
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ffiffiffi
3
p

ðc2
a � 1Þ=2ca �

ffiffiffi
3
p

=ca �
ffiffiffi
3
p

ð�12�12Þ½4�2�23� �1
ffiffiffi
3
p

ðc2
a � 1Þ=ca

ffiffiffi
3
p

=ca

ffiffiffi
3
p

ð11�22Þ½�4223� 2
ffiffiffi
3
p

ð2þ c2
aÞ=2ca ðc2

a � 2Þ
ffiffiffi
3
p

=2ca 0
ð11�22Þ½2�423� �1

ffiffiffi
3
p

ðc2
a � 4Þ=2ca c2

a

ffiffiffi
3
p

=2 �
ffiffiffi
3
p

234 B. Beausir et al. / International Journal of Plasticity 23 (2007) 227–243
S4 � S3 section where only basal slip is active). This is why different scales are used in
Fig. 2, depending on the section considered.

Concerning the strain-rate potentials, their shapes and sizes are reversed with respect to
the stress potential surfaces. The surfaces corresponding to the lower m values are now the
inner ones. This reversal in the relative size is due to the fact that the plastic power is the
same along all surfaces, so when the stress level is high, the strain-rate must be low. The
differences in the shapes of the strain-rate potentials with respect to the stress potential sur-
faces are due to the duality of these surfaces. As discussed by Hill (1987) for the rate insen-
sitive case, the vertices of the stress potentials correspond to the outer directions (or poles)
of the hyperplanes composing the strain-rate potentials (and inversely). Fortunier (1989)
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presented the strain-rate potential surfaces dual to the Bishop and Hill surfaces when
m = 0 for the fcc structure. Although the procedure of Fortunier could also be established
for the hcp case, in the present paper the m = 0 case was approximated by using a very
small strain-rate sensitivity value: m = 0.005 in Figs. 1 and 2.

Not all the sections shown in Figs. 1 and 2 are closed. A closed surface means that
the strain-rate associated with any admissible stress state in the given section is also
located in the same section (Canova et al., 1985). Table 2 shows the results for all sec-
tions (from one to four dimensions) obtained for the present hcp case in comparison to
the cubic structure. It can be seen in Table 2 that when in the cubic system a sub-space
is not closed, it is also not closed in the hexagonal case. Inversely, however, when a sub-
space in the cubic case is closed, it can be not closed in the hexagonal case. This is again
the consequence of the larger degree of anisotropy of hexagonal structures with respect
to the cubic case.
Table 2
Closed (c) or not closed (nc) sub-spaces for hexagonal and cubic structures in five dimensions

Sub-space of imposed stress
state

Sub-space of corresponding strain-
rate state

Closed (c) or not
closed (nc) sub-spaces

S1 S2 S3 S4 S5 _e1 _e2 _e3 _e4 _e5 hcp cubic

X 0 0 0 0 X 0 0 0 0 c c
0 X 0 0 0 X X 0 0 0 nc c
0 0 X 0 0 0 0 X 0 0 c c
0 0 0 X 0 0 0 X X 0 nc c
0 0 0 0 X 0 0 0 0 X c c
X X 0 0 0 X X 0 0 0 c c
X 0 X 0 0 X X X 0 0 nc nc
X 0 0 X 0 X X 0 X 0 nc nc
X 0 0 0 X X 0 0 0 X c c
0 X X 0 0 X X X 0 0 nc nc
0 X 0 X 0 X X 0 X 0 nc nc
0 X 0 0 X X X 0 0 X nc c
0 0 X X 0 0 0 X X 0 c c
0 0 X 0 X 0 0 X 0 X c c
0 0 0 X X X X X X X nc c
X X X 0 0 X X X 0 0 c c
X X 0 X 0 X X 0 X 0 c c
X X 0 0 X X X 0 0 X c c
X 0 X X 0 X X X X X nc nc
X 0 X 0 X X X X X X nc nc
X 0 0 X X X X X X X nc nc
0 X X X 0 X X X X X nc nc
0 X X 0 X X X X X X nc nc
0 X 0 X X X X X X X nc nc
0 0 X X X X X X X X nc c
X X X X 0 X X X X X nc c
X X X 0 X X X X X X nc c
X X 0 X X X X X X X nc c
X 0 X X X X X X X X nc nc
0 X X X X X X X X X nc nc
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3. The case of linear viscous slip; m = 1

For the case of linear viscous slip, m = 1, an analytic relation between the strain-rate
state and deviatoric stress state can be obtained. Using vector quantities, Eq. (2)
becomes:

_ei ¼
Xnf

f¼1

Xnsf

s¼1

Ms;f
i _cs;f : ð16Þ

Eqs. (4) and (10) lead to:

_cs;f ¼ _c0

sf
0

Ms;f
i Si: ð17Þ

Finally, _ei can be expressed as follows:

_ei ¼ _c0

Xnf

f¼1

Xnsf

s¼1

1

sf
0

 !
Ms;f

i Ms;f
j Sj: ð18Þ

This relation can be re-written as:

_ei ¼ _c0Sj

Xnf

f¼1

1

sf
0

Xnsf

s¼1

Ms;f
i Ms;f

j : ð19Þ

By defining

H f
ij ¼

Xnsf

s¼1

Ms;f
i Ms;f

j ; ð20Þ

Eq. (19) becomes:

_ei ¼ _c0Sj

Xnf

f¼1

1

sf
0

H f
ij: ð21Þ

This relation can still be simplified by introducing the general notation:

H ij ¼
Xnf

f¼1

1

sf
0

Hf
ij; ð22Þ

which allows us to express Eq. (21) as follows:

_ei ¼ _c0H ijSj: ð23Þ
The H f

ij matrix has a special property in the crystal reference system: it is diagonal for all
slip system families of bcc, fcc and even for hcp crystal structures. Consequently, Hij is also
diagonal. This property, unfortunately, is lost when the ms;f

ij quantities are expressed in any
other reference system. Because of the diagonal nature of H f

ij, the stress state can be readily
obtained from Eq. (23) as follows:

Si ¼
_ei

_c0H ðiiÞ
; ð24Þ

where the parenthesis (ii) denotes no summation on i.
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The values of the diagonal components of H f
ij are shown in Table 3 for bcc, fcc and hcp

crystal structures. In the example shown, all sf
0 values were taken to be 1 MPa.

The result expressed by Eq. (24) is very useful in rate-sensitive crystal plasticity calcu-
lations and allows the stress response of the crystal to be immediately obtained for any
imposed strain-rate in an analytic way (i.e., without solving any equation). Note, however,
that this is only valid for linear viscous plastic slip of a crystal; i.e., when m = 1.

Now the stress and strain-rate potentials can be examined for the restricted case of lin-
ear viscous slip. Using Eq. (23), the condition given by Eq. (11) becomes:

_W ¼ 1

_c0

X5

i¼1

ð_eiÞ2

H ðiiÞ
¼ C: ð25Þ

Now the strain-rate potential function hð_eÞ will be determined. A normal vector to its
surface should give the deviatoric stress, i.e.,

Si ¼ k
ohð_eÞ
o_ei

: ð26Þ

where k is a positive scalar factor. Using Eq. (25), hð_eÞ can be readily obtained:

hð_eÞ ¼ 1

2_c0

X5

i¼1

ð_eiÞ2

H ðiiÞ
: ð27Þ

The value of k is 0.5 (obtained from Eqs. (24) and (26)). It can be readily verified that by
substituting hð_eÞ in Eq. (26) we recover Eq. (24).

The stress potential surface can be obtained from Eq. (27) using Eq. (24):

f ðSÞ ¼
X5

i¼1

ðSiÞ2H ðiiÞ: ð28Þ

It is obvious from the expression of the equi-potentials that they are not defined if one
of the H(ii) values is zero. This does not happen in fcc and bcc structures; it happens, how-
ever, in hcp crystal systems when the basal, prismatic or pyramidal Æaæ slip systems are
considered alone (see Table 3). This also follows from the well-known deficiency of strain
accommodation for hcp structures; i.e., that these slip systems alone are not sufficient to
Table 3
Hf

ii values in fcc, bcc and hcp (magnesium, c/a = 1.624) structures

Families H11 H22 H33 H44 H55

fcc {111}Æ110æ 2 2 2/3 2/3 2/3

bcc {110}Æ110æ 2 2 2/3 2/3 2/3
{112}Æ111æ 2 2 2/3 2/3 2/3
{123}Æ111æ 4 4 4/3 4/3 4/3

hcp Basal – f0001gh11�20i 0 0 0.75 0.75 0
Prismatic – f1010gh�11�20i 0.75 0 0 0 0.75
Pyr.Æaæ – f1011gh�12�10i 1.17 0 0.33 0.33 1.17
Pyr:hcþ ai=A – f01�11gh11�2�3i 0.64 2.89 0.91 0.91 0.64
Pyr:hcþ ai=B – f11�22gh2�423i 1.31 1.97 0.71 0.71 1.31
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permit an arbitrary deformation of the crystal without adding to them the pyramidal slip
system family. The pyramidal Æc + aæ/A and pyramidal Æc + aæ/B slip system families, how-
ever, can accommodate any imposed deformation.

For the shape and size variations of the strain-rate hð_eÞ and stress equi-potentials f(S)
for the hexagonal crystal structure (c/a = 1.624, magnesium) in the present linear case, see
Figs. 1 and 2.
4. Plastic spin

Over the years, there has been considerable interest in the concept of plastic spin in the
plasticity community. Even in phenomenological constitutive modelling the plastic spin
has been employed to describe the evolution of anisotropy (see, for example, Dafalias
and Rashid, 1989; Van der Giessen et al., 1992; Bunge and Nielsen, 1997; Song and
Voyiadjis, 2002; Gurtin and Anand, 2005). In crystal plasticity, the plastic spin is an
important element in the calculation of the lattice spin (see, for example, Havner, 1981;
Tóth et al., 1988, 1990; Aravas and Aifantis, 1991; Dafalias, 1998; Van Houtte, 2002).

It is necessary to distinguish among three types of rotation when the lattice spin of a
crystal due to plastic slip is calculated (assuming that elastic distortions are neglected).
They are:

b, the material spin, which is the skew-symmetric part of the velocity gradient L relative
to the fixed reference system and given by

bij ¼
Lij � Lji

2
; ð29Þ

x, the plastic spin, which is the skew-symmetric part of the velocity gradient corre-
sponding to the plastic slip alone; with respect to the fixed reference system it is given
by (Havner, 1981, 1984):

xij ¼
Xnf

f¼1

Xnsf

s¼1

ms;f
ij � ms;f

ji

2
_cs;f ; ð30Þ

X, the lattice spin, which is the rate of rotation of the crystallographic directions with
respect to the fixed reference system.

The following relation exists between these quantities (Havner, 1972):

x ¼ b� X: ð31Þ

In the following, the plastic spin will be evaluated in detail. By using the constitutive
law Eq. (1) together with Eq. (4), Eq. (30) becomes:

xij ¼
_c0

2

Xnf

f¼1

1

ðsf
0Þ

1=m

Xnsf

s¼1

ðms;f
ij � ms;f

ji Þms;f
kl Skl ms;f

pq Spq

��� ���1
m�1

: ð32Þ

For m = 1 this relation reads:

xij ¼
_c0

2
Skl

Xnf

f¼1

1

sf
0

Xnsf

s¼1

ðms;f
ij � ms;f

ji Þms;f
kl : ð33Þ
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By defining:

Hf
ijkl ¼

Xnsf

s¼1

ms;f
ij ms;f

kl ; ð34Þ

Eq. (33) becomes:

xij ¼
_c0

2
Skl

Xnf

f¼1

1

sf
0

ðHf
ijkl � H f

jiklÞ: ð35Þ

This relation can be further simplified by introducing the general notation:

Hijkl ¼
Xnf

f¼1

1

sf
0

Hf
ijkl: ð36Þ

As a result, Eq. (35) finally reads:

xij ¼
_c0

2
ðHijkl � H jiklÞSkl: ð37Þ

The calculation of the Hijkl quantities for all families of slip systems in bcc, fcc and hcp
structures gives the following general result (independently of the relative strengths sf

0 of
the slip system families): for 60 of the 81 cases, Hijkl = 0 (for ij 6¼ kl and i 6¼ j).

Tóth et al. (1988) have shown that the plastic spin is zero for cubic structures when
m = 1. As a consequence, the lattice rotation rate X is equal to the material rotation rate
b. In tension, compression or rolling, the material rotation rate is zero, so the lattice rota-
tion will also vanish. Consequently, there is no evolution of the crystallographic texture in
cubic polycrystals for these cases. However, the same conclusion is not valid for the hcp
crystal structures. It has been found using Eq. (37) that only rotations around the c-axis
vanish (x12 = 0). The other two components of the rotation vector are generally non-zero;
i.e., x13 6¼ 0 and x23 6¼ 0. The reason for this can be that the only symmetry axis in hcp
structures is the c-axis, which is the axis of the x12 component of the plastic spin. By con-
trast, in cubic structures, there is a symmetry for all three crystal axis, and this can be the
reason that all components of the plastic spin rotation xij are zero for m = 1 in that case.

The consequence of the non-zero plastic spin in hexagonal crystal structures is that tex-
tures should develop in hcp polycrystals. Nevertheless, it is important to see to what extent
the texture can be altered because of the non-zero plastic spin. For this purpose, simula-
tions of texture developments have been carried out for the case of an hcp polycrystalline
magnesium. Simple shear has been selected as a deformation path because large strains
can be generally achieved in simple shear using torsion testing. A constant velocity gradi-
ent was used:

L ¼
0 1:0 s�1 0

0 0 0

0 0 0

0
B@

1
CA: ð38Þ

The rigid body spin corresponding to this velocity gradient is: b12 = 0.5 s�1. One hun-
dred randomly oriented grain orientations have been selected for the initial texture, which
was centro-symmetrized with respect to axis z of the coordinate system (the only symmetry
that applies to shear testing). The distribution in the form of a (0001) pole figure is
depicted in Fig. 3a. The relative strengths of the slip systems were sprism:

0 ¼ spyr:hai
0 ¼

2sbasal
0 and spyr:hcþai=A

0 ¼ spyr:hcþai=B
0 ¼ 3sbasal

0 (see Agnew et al., 2005).
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Fig. 3. Simulated texture development during simple shear of polycrystalline magnesium.
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The texture development is controlled by the lattice spin X, which is given by Eq. (31);
i.e., X = b � x. The lengths of the lattice and plastic spin vectors are given by:

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

32 þ X2
13 þ X2

12

q
; x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

32 þ x2
13 þ x2

12

q
: ð39Þ

As b is constant in this example, the evolution of the plastic spin is the decisive factor in
the evolution of the texture. As this quantity varies from one crystal to another, an average
value �x was calculated to represent the lattice spin of the polycrystal. In Fig. 4, this quan-
tity is plotted as a function of the shear deformation of the simulated polycrystal. As seen
in this figure, �x is very low for m = 1 (with respect to the value b12 = 0.5 s�1); it is only
about 0.0285 s�1, and remains practically constant during straining. Consequently, the
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Fig. 4. Evolution of the average plastic spin with shear deformation for hexagonal crystal structured polycrystal
(magnesium) for various strain-rate sensitivity index values.
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texture development is virtually a simple rotation of the initial texture around the z-axis
(the centre of the pole figure) in the clockwise direction. During this large strain simulation
(up to a shear strain of 10.0), the expected rotation of the texture can be estimated by an
integration of the average lattice spin �X during straining. This integral leads to the value of
286.5� for the present case. This rotation is indicated in Fig. 3b (with respect to Fig. 3a),
which seems to agree well with the overall rotation of the texture. However, the contribu-
tion of the plastic spin is very small. For example, the calculated value of the rotation cor-
responding to a zero value of �x is 285.2�; this is very close to the above value of 286.5�
when the plastic spin is included in the computation.

For comparison purposes, simulations have also been carried out for lower m values,
down to m = 0.01. The obtained average plastic spin increases significantly with m, as seen
in Fig. 4. The value of �x also varies as a function of strain, because of the evolution of the
crystallographic texture. First it generally increases, then decreases after reaching a local
maximum. The textures that correspond to these maximum plastic spin values are dis-
played in Fig. 3c–f. Only when m is very low can the plastic spin approach the value of
the rigid body spin, and only at large strains. At that stage, almost all crystal orientations
arrive near stable (ideal) positions in orientation space and the texture becomes very sharp,
as seen in Fig. 3f. The effect of the m value on texture development has already been dis-
cussed by (Tóth et al., 1988) for the fcc case. Similar findings are valid for the hexagonal
crystal structure considered here.

5. Conclusions

The stress and strain-rate potentials have been analysed for hexagonal crystal struc-
tures: the effects of viscoplastic slip and the relative strengths of the slip system families
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have been highlighted. The case of linear viscous slip in crystal plasticity has also been
examined in detail. The stress response of the crystal for a given imposed strain-rate
and the plastic spin were determined. The simplicity of the constitutive law and the crystal
symmetry allowed the development of direct closed-form analytical relations when m = 1.
The results of this investigation lead to the following major conclusions for the m = 1 case:

1. The stress state corresponding to the imposed strain-rate state can be obtained from a
direct linear relation in the crystal reference system.

2. Contrary to the case of cubic crystals, the plastic spin is not zero in hexagonal crystal
structures. Nevertheless, its value is very low with respect to the imposed rigid body
spin.
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