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Disclinations provide the missing
mechanism for deforming olivine-rich
rocks in the mantle
Patrick Cordier1, Sylvie Demouchy2, Benoı̂t Beausir3, Vincent Taupin3, Fabrice Barou2 & Claude Fressengeas3

Mantle flow involves large strains of polymineral aggregates. The strongly anisotropic plastic response of each individual
grain in the aggregate results from the interactions between neighbouring grains and the continuity of material
displacement across the grain boundaries. Orthorhombic olivine, which is the dominant mineral phase of the Earth’s
upper mantle, does not exhibit enough slip systems to accommodate a general deformation state by intracrystalline slip
without inducing damage. Here we show that a more general description of the deformation process that includes the
motion of rotational defects referred to as disclinations can solve the olivine deformation paradox. We use high-resolution
electron backscattering diffraction (EBSD) maps of deformed olivine aggregates to resolve the disclinations. The dis-
clinations are found to decorate grain boundaries in olivine samples deformed experimentally and in nature. We present a
disclination-based model of a high-angle tilt boundary in olivine, which demonstrates that an applied shear induces
grain-boundary migration through disclination motion. This new approach clarifies grain-boundary-mediated plasticity
in polycrystalline aggregates. By providing the missing mechanism for describing plastic flow in olivine, this work will
permit multiscale modelling of the rheology of the upper mantle, from the atomic scale to the scale of the flow.

There is a large body of work describing plastic deformation of olivine1,2,
which is by far the most abundant (,60–70%) and the weakest upper-
mantle mineral under a wide range of thermo-mechanical conditions.
In this literature, the prevailing deformation mechanisms include the
transport of matter by diffusion and of shear by motion of dislocations.
However, the dislocation-based crystal plasticity of olivine is challenged
by a lack of slip systems. For plastic flow to occur homogeneously by
dislocation glide alone, at least five independent slip systems must
operate, according to the Von Mises criterion3. This requirement can
be relaxed to four slip systems if inhomogeneous flow is allowed4. In
orthorhombic olivine (space group Pbnm), plastic slip is restricted to
[100] and [001] directions with no possibility of shear along [010].
Hence, only four slip systems are available: [100](010), [100](001),
[001](010) and [001](100). In this case, the only non-vanishing com-
ponents of the corresponding Schmid tensors (the number of overbars

indicates the rank of the tensor) m are: m 100½ � 010ð Þ
12 ~m 100½ � 010ð Þ

21 ~0:5;

m 100½ � 001ð Þ
13 ~m 100½ � 001ð Þ

31 ~0:5; m 001½ � 010ð Þ
23 ~m 001½ � 010ð Þ

32 ~0:5; and m 001½ � 100ð Þ
13

~m 001½ � 100ð Þ
31 ~0:5. Thus, the slip systems [100](001) and [001](100)

are not linearly independent, and only the three-system sets ([100]
(010), [100](001) and [001](010)) and ([100](010), [001](010) and
[001](100)) are. Therefore, olivine aggregates do not fulfil Hutchinson’s
relaxed condition, and arbitrary deformation can only be accommo-
dated if additional degrees of freedom are provided, by climb (that is,
dislocation motion out of the glide plane by absorption/emission of
point defects) for instance. However, if climb is able to help dislocations
to overcome obstacles, the climb rate is not efficient enough in olivine
to provide a significant contribution to the strain (see Supplementary
Information). Hirth and Kohlstedt5 have proposed that grain-boundary
sliding accommodated by (that is, rate limited by) dislocation motion
could provide an alternative mechanism and account for a creep regime

observed for olivine in which strain rate is nonlinear in stress and
sensitive to grain size6. However, grain-boundary sliding requires dis-
placement discontinuity7 and/or rotational discontinuity at grain bound-
aries, which is likely to induce damage. More recently, Detrez et al.8

have explored theoretically the possibility that the lack of slip systems
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Figure 1 | Volterra’s distortions. a, Reference cylinder with defect line j0 and
cut surface S. b, c, Edge dislocations with Burgers vector �b. d, Screw dislocation
with Burgers vector �b. e, f, Twist disclinations with Frank vector �v. g, Wedge
disclination with Frank vector �v.
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in olivine could be overcome by purely diffusive (that is, linear) mechan-
isms operating at grain boundaries. They showed, however, that such a
mechanism was unable to sustain a nonlinear rheology.

Disclinations in solids
Here we show that the lack of slip systems in olivine can be offset by a
more general analysis of plastic deformation in solids. Indeed, plastic
deformation does not result only from the motion of dislocations. Dis-
locations are the crystal defects arising from translational lattice incom-
patibility, as measured by the Burgers vector or Nye’s dislocation density

tensor a (see Supplementary Information for a summary of the elasto-
plastic field theory of crystal defects). Similarly, the rotational incom-
patibility of the crystal lattice can be related to defects called disclinations.
Dislocations and disclinations were both proposed by Volterra9 to
account for the discontinuity of elastic displacements and rotations
along surfaces in a solid containing defects (Fig. 1). In the thought
experiment proposed by Volterra, a cut is made in a defect-containing
elastic cylinder, from which the core of the line defect, lying along the
cylinder axis, has been removed. In the presence of lattice incompat-
ibility, the cut induces rigid-body motion of one edge of the cut with

Table 1 | The compatible and incompatible elasto-static defect theory
Translational Rotational

Displacement vector u Rotation vector
v~

1
2

curl u

Strain tensor e~
1
2

grad uzgradt u
� �

Curvature tensor k~grad v

Cauchy stress tensor
s~C : ee Couple-stress tensor M~A : ke

Equilibrium condition for stresses div s~0 Equilibrium condition for couple stresses div M~0

Nye’s dislocation density tensor a~curl Ue~{curl Up
Disclination density tensor h~curl ke~{curl kp

The left column displays the features of translational elasticity and plasticity; the right column shows the rotational counterparts. The derivation of these elements is provided in the Supplementary Information.
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Figure 2 | Geometrically necessary dislocation densities in olivine. Densities
are given per micrometre. a, Entrywise norm of Nye tensor a in sample
PoEM22 (experimentally deformed at 8% in compression at 900 uC). b, Close-
up, showing the a13 component with an opposite curvature on the subgrain
boundary. c, Nye tensor components projected in the crystal reference system

along a subgrain boundary (red arrow); the [100]-glide, [010]-glide and [001]-
glide are plotted with red, blue and green marks, respectively. With [100] and
[001] edge dislocations prevailing, the subgrain boundary is essentially a tilt
boundary. We note the occasional presence of a twist component through sets
of screw dislocations at a right angle (a11,a33).
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respect to the other. When this motion is a translation, the defect is
referred to as a dislocation, whose strength is the so-called Burgers vector,
that is, the (space-independent) translation vector. A disclination is
obtained when the motion is a pure rotation. The strength of the dis-
clination is the relative rotation vector of the undeformed edges of the
cut, referred to as the Frank vector. The relative displacement of the

edges in this rotation also gives rise to a space-dependent Burgers vector
associated with the disclination. As rotational defects, disclinations are set
into motion by moments of stresses. This motion results in disclination-
mediated plasticity not accounted for by the dislocation theory. Dis-
clinations have long been neglected in the field theory of crystal defects,
including for deep Earth minerals, owing to the very large level of elastic

10 μm

3 μm 1.5 μm

–9.0 8.2 μm–2

3.9 μm–2

–4.3 –11

100.00

10.00

1.00

0.10

0.01
0.1 1.0

Wedge disclination density (rad μm–2)

All grain boundaries (+)

All grain boundaries (–)

Triple junction only (+)

Triple junction only (–)

10.0

P
ro

b
a
b

ili
ty

 o
f 

o
c
c
u
rr

e
n
c
e
 (
%

)
12 μm–2

a

b c d

Figure 3 | Three maps representing the density of wedge disclinations h33 in
three deformed olivine aggregates, and the probability of occurrence for
sample T0548. The density is given in radians per square micrometre. (See
below and Supplementary Information for a detailed description of the
samples.) The local Burgers vectors arising from edge dislocations are
represented by the blue arrows: their horizontal and vertical components are
respectively a13 and a23 (given per micrometre). a, Sample PoEM22
(experimentally deformed 8% compression at 900 uC). This low-magnification

map shows the pervasive occurrence of disclinations in grain boundaries.
b, Sample T0548 (experimentally deformed 250% torsion at 1,200 uC).
c, Sample OOM, a naturally deformed mylonitic harzburgite from the Oman
ophiolite (Sumail massif). d, Probability of occurrence of positive (1) versus
negative (2) wedge disclination density h33 in sample T0548. Filled circles
indicate all positive wedges, open circles indicate all negative wedges, filled
triangles indicate positive triple junction wedges and open triangles indicate
negative triple junction wedges.
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energy they involve, compared with dislocations, which precludes their
occurrence as isolated crystalline objects10. However, self-screened con-
figurations, such as disclination dipoles, involve relatively small elastic
energy levels11,12. It was recently shown that disclination dipoles are
pervasive along boundaries and subgrain boundaries in severely deformed
copper, inclusion-free steel, electrodeposited aluminium thin film and
in recrystallized titanium13, highlighting the importance of rotational
defects in metallic polycrystals.

Disclinations evidenced by EBSD
To check whether, like metals, deformed olivines contain disclinations,
we used EBSD, which is a technique well adapted to local lattice ori-
entation measurements. From the orientation differences Dhi between
neighbouring points separated by Dxj the elastic curvature tensor (see
Table 1) can be captured:

ke
ij~

Lhi

Lxj
<

Dhi

Dxj
ð1Þ

In fact, only six components of the elastic curvature tensor can be
determined, because differences along the direction perpendicular to
the surface are not available14 (see Methods). The Nye’s dislocation
density tensor can then be approximately derived as

aik~dikke
mm{ke

ki ð2Þ
Using this equation and considering the constraints on the measure-

ments, five dislocation densities can be recovered in the reference frame

of the laboratory, namely a12, a13, a21, a23 and a33, if the surface lies
along the (1, 2) directions. Knowing the crystal orientation at each
measurement point, these dislocation densities can be rotated in the
crystallographic reference frame (they are then referred to as ac

ij, where
‘c’ indicates ‘crystallographic’). Figure 2a, b shows a scalar dislocation
measure (that is, the length of the local Burgers vector per unit surface
resulting from the edge dislocation densities a13, a23) in olivine poly-
crystals deformed experimentally15,16. One of the most remarkable
features of these maps is the occurrence of numerous straight subgrain
boundaries, especially in the larger grains. These subgrain boundaries
are commonly observed in olivine grains17–19 in naturally deformed
mantle rocks. Made of geometrically necessary dislocations20, subgrain
boundaries accommodate intracrystalline misorientations and repres-
ent a first indication (largely overlooked) of the importance of these
components in the plastic deformation of olivine. The analysis of the ac

ij

components allows us to characterize the dislocation types present in
the sample. Figure 2c shows such an analysis performed along one of
the subgrain boundaries (Fig. 2b). The boundary is made of [100] dis-
locations (ac

11,ac
12,ac

13) described in the crystal reference frame and of
[001] dislocations (ac

31,ac
32,ac

33). The components corresponding to [010]-
glide (ac

21,ac
22,ac

23) are negligible, in agreement with the known character-
istics of olivine. Further characterization within the samples considered
in this study leads to the same conclusion and demonstrates that our
analysis allows the dislocation content in deformed olivine to be resolved.
Previously, only decoration (annealing followed by optical microscopy
or scanning electron microscopy) or transmission electron microscopy
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Figure 4 | Disclination-based modelling of the (011)/[100] tilt grain
boundary with misorientation 606 modelled at the atomic scale in
olivine21. a, Initial wedge disclination density h33 (given in radians per square
metre) used in the simulations. The triangles represent the structural units

proposed by ref. 21 (see Methods for the construction of this model). b, Elastic
dilations and contractions. c, Shear stress s12 (given in pascals). d, Elastic
energy density (given in joules per cubic metre).
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were available to characterize dislocation microstructures in olivine. This
new technique also has another use, in that the variations in space of the
elastic curvatures tensor yield the disclination densities:

hij~ejklk
e
il,k ð3Þ

Figure 3 presents the results of this analysis performed on the experi-
mentally and naturally deformed samples. It shows that the grain bound-
aries are associated with dislocation densities but also that they contain
numerous disclinations correlating with the variations in misorientation
along the grain boundary. Disclinations are also frequently associated
with triple junctions. A visual inspection suggests that positive and nega-
tive disclinations are spatially coupled in the form of dipoles. The stat-
istical analysis of Fig. 3d demonstrates that positive and negative wedge
disclination densities balance perfectly, not only for the set of all grain
boundaries but also for the subset composed of triple junctions. The
present study shows that disclination dipoles and the rotational incom-
patibility they reveal represent a significant component of the deforma-
tion field in plastically deformed olivines, which is localized in grain
boundaries and complements the known contribution of dislocations.

Disclinations-based grain-boundary migration
To illustrate the role of disclinations on plasticity, we built a model of a
tilt boundary in olivine with a periodic wedge disclination array. We
started from the (011)/[100] tilt grain boundary with misorientation
60u already modelled at the atomic scale in olivine21. Figure 4 shows
the disclination model built on this boundary. The wedge disclination
density spots are located on the vertices of the structural units21. The
zigzag arrangements of the wedge disclinations result in a very effi-
cient self-screening quasi-quadrupole configuration11. Indeed, most
of the energy is located within the structural units identified on the ato-
mistic model. Our disclination-based model leads to a grain-boundary
energy of 1.3 J m22, in excellent agreement with the value proposed by
Adjaoud et al.21 based on atomistic calculations of 1.28 J m22. When a
shear stress is applied to this disclination distribution, the strong var-
iations of the local shear strain within the defect-containing areas generate
couple stresses. In response to this couple-stress field, the disclination

dipoles are set into motion normal to the boundary (Fig. 5), producing
plastic shear parallel to the boundary. The disclination dipole structure
is maintained during this motion, which induces both migration of the
boundary and shear of the crystal. Like other grain-boundary deformation
mechanisms, grain-boundary migration/disclination motion is depend-
ent on grain size. It is more apparent when the proportion of matter
involved in grain boundaries is higher, that is, at small grain sizes.

We note that this disclination-induced grain-boundary migration
mechanism can exhibit linearity, or nonlinearity in stress, depending
on the assumed relationship between disclination velocity and the
associated driving force. A more comprehensive study of the disclina-
tion structure, energy and mobility of grain boundaries as functions of
misorientations is clearly needed to reach an eventual description of
the rheology of an olivine aggregate. EBSD-based disclination imaging
in naturally deformed olivine aggregates will allow these models to be
established. Our model might also explain the formation of crystal-
preferred orientations in materials deformed in the Newtonian creep
regime22, as recently documented for olivine23.

METHODS SUMMARY
We used high-resolution EBSD to analyse the microstructure of four aggregates.
These were a mylonitic harzburgite (OOM) from the Oman ophiolite (Sumail
massif) and three olivine aggregates: a hot-pressed undeformed sample (PI-1619;
ref. 15), a deformed sample in compression at 300 MPa and 900 uC (PoEM22) and
a deformed sample under torsion at 300 MPa and 1,200 uC (T0548). EBSD analyses
were conducted with a CamScan X500FE CrystalProbe. The operating conditions
were 15 kV and 2.5-nA current under low-vacuum conditions (4–5 Pa of gaseous
nitrogen) with a 20-mm working distance. The step size was 0.15mm or 0.2mm.
The data were acquired and treated with CHANNEL5 software (http://caf.ua.edu/
wp-content/uploads/docs/JEOL-7000F-Oxford_Channel_5_User_Manual.pdf).

The elastic curvature tensor ke (where ‘e’ indicates ‘elastic’) was recovered from
the EBSD orientation maps. By additionally recovering the elastic strain field ee

and building the curl of this field curl ee, the dislocation density tensor a can be
inferred exactly. In this work, as in most studies, the curl ee term is overlooked,
and a is approximated by

a~Tr ke
� ���I{kt

e ð4Þ
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In addition, the disclination density tensor h may be recovered by building the
curl of ke. When a single planar orientation map is known, only five components

of a and three components of h can be determined. If the planar directions are
labelled (1, 2) in the sample frame, the available components are a12,a13,a21,ð
a23,a33Þ and h13,h23,h33ð Þ. To predict the grain-boundary structure and mobility,
we used a theory of crystal defect fields (disclinations and dislocations) defined at
the interatomic scale24,25. Our modelling paradigm is to account for the lattice
incompatibility arising from crystal defects by focusing on the defect densities,
rather than on the atoms themselves. The theory has the standard mathematical
structure of a set of partial differential equations with boundary conditions. The
unknown fields are the tensorial defect densities (dislocations and disclinations)
and displacement vector fields, with standard boundary conditions on displace-
ments and traction/moment vectors. As a consequence of this boundary value struc-
ture, approximate solutions can be generated by using finite-element methods26.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.

Received 9 July 2013; accepted 14 January 2014.

Published online 26 February 2014.

1. Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere—constraints
imposed by laboratory experiments. J. Geophys. Res. 100 (B9), 17587–17602
(1995).

2. Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory (ed. Eiler, J.) 83–105
(American Geophysical Union, 2003).

3. Von Mises, R. Mechanik der plastischen Formänderung von Kristallen. Z. Angew.
Math. Mech. 8, 161–185 (1928).

4. Hutchinson, J.W.Creepand plasticity ofhexagonalpolycrystalsas related to single
crystal slip. Metall. Trans. A 8, 1465–1469 (1977).

5. Hirth, G. & Kohlstedt, D. L. Experimental constraints on the dynamics of the
partially molten upper-mantle. 2. Deformation in the dislocation creep regime.
J. Geophys. Res. 100 (B8), 15441–15449 (1995).

6. Hansen, L. N., Zimmerman, M. E. & Kohlstedt, D. L. Grain boundary sliding in San
Carlos olivine: flow law parameters and crystallographic-preferred orientation.
J. Geophys. Res. 116, B08201 (2011).

7. Langdon, T. G. Grain boundary sliding revisited: developments in sliding over four
decades. J. Mater. Sci. 41, 597–609 (2006).

8. Detrez, F., Castelnau, O., Cordier, P., Merkel, S. & Raterron, P. Second-order theory
for the effective behavior in viscoplatic polycrystals without sufficient slip system
families: application to olivine. J. Mech. Phys. Solids (submitted).

9. Volterra, V. Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci.
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METHODS
This section describes the methods we used to analyse the defects (dislocations
and disclinations) from naturally and experimentally deformed olivine samples
as well as the disclination-based model for shear grain-boundary migration. It is
largely based on the elasto-plastic field theory of crystal defects described in
several references cited in the text. Readers unfamiliar with this field may first
read the introduction to the Supplementary Information.
Dislocation and disclination analysis from EBSD orientation mapping. A
mylonitic harzburgite (sample OOM) from the Oman ophiolite (Sumail massif)
was selected as representative of a highly deformed uppermost mantle. Modal
compositions are: 82% olivine, 15% enstatite, 1.5% diopside, and 1% spinel with
minor traces of chlorite and amphibole. The specimen is fine-grained (average
grain size of 90mm), but with three generations of grains16: recrystallized equigra-
nular grains (120–150mm), a few larger grains (800–1,000mm) and largely distributed
bands of ultra-mylonitic olivine (,50mm, which are the sections analysed here).
Experimentally deformed olivine sample PoEM22. Hot-pressing and deforma-
tion experiments were carried out at a confining pressure of 300 MPa in a high-
resolution gas-medium mechanical testing apparatus (Paterson apparatus) at
Geosciences Montpellier (France). A dry fine-grained powder of olivine (average
grain size of 7mm; ref. 27) was cold-pressed into a thin Ni sleeve (200 mm thick)
with an outer diameter of 9.90 mm and 20 mm in height. Both ends were closed
with a thin fitted Ni disk (200mm thick) held in place by an external thin rim of
superglue. The Ni sleeve was used to buffer oxygen fugacity (along the Ni–NiO
curve). The sample assembly for all types of deformation experiment was then
encapsulated along with zirconia and alumina pistons and spacers inside an iron
jacket27. The aggregate was hot-pressed at 1,250 uC under a confining pressure of
300 MPa for 3 h; then the temperature was slowly decreased down to 900 uC. In
parallel, the confining pressure was carefully kept at 300 MPa during the temper-
ature decrease. Tri-axial deformation at constant displacement rate was initiated
one hour after temperature stabilization at 900 uC for sample PoEM22 (each run
produced one sample) (ref. 28). The strain rate was 1.1 3 1025 s21. A maximal
strain of 7.6 was reached. The stress–strain curves show strong work-hardening.
Experimentally deformed olivine sample T0548. Hot-pressing experiments
were carried out at a confining pressure of 300 MPa in a high-resolution gas-
medium mechanical testing apparatus (Paterson apparatus) at the Departement
of Geology and Geophysics, University of Minnesota, USA. A dry fine-grained
powder of olivine (average grain size 3.8mm) was cold-pressed into a thin Ni
canister at 1,250 uC for 3 h under hydrostatic pressure15. After sample recovery
and further preparation, the olivine dense aggregates were transferred to a high-
resolution gas-medium torsion apparatus29 for deformation in torsion at the
Department of Geology and Geophysics, University of Minnesota, USA. Deforma-
tion at constant rotation rate15 was started after one hour after annealing at tem-
perature 1,200 uC and 300 MPa of confining pressure with a force of 1 kN (16 MPa)
applied on the sample. The shear strain rate was 8.0 3 1025 s21 (equivalent to a
strain rate of 4.6 3 1025 s21) . A maximal shear stress of 158 MPa (equivalent to a
axial stress of 248 MPa) was reached. The finite shear strain was 3.04.
Experimentally sintered and undeformed olivine sample PI-1619. The hot-
pressing experiment was carried out at a confining pressure of 300 MPa in a high-
resolution gas-medium mechanical testing apparatus (Paterson apparatus) at the
University of Minnesota, USA. A dry fine-grained powder of olivine was first
cold-pressed at 100 MPa into a thick-walled Ni canister15 (26 mm long, 11.7 mm
outside diameter, 10 mm inside diameter). Afterwards, both ends were closed
with a fitted Ni plug. The Ni sleeve was used to buffer oxygen fugacity (along the
Ni–NiO curve) as for the deformed olivine aggregate. Water was added to the
canister, but did not affect the hot-pressing step. The sample assembly for all types
of hot-pressed or deformation experiment was then encapsulated along with
zirconia and alumina pistons and spacers inside an iron jacket15. The aggregate
was then hot-pressed at 1,250 uC under a confining pressure of 300 MPa for 3 h in
static conditions (no load was applied to the sample). The density of wedge
disclinations in this sample is displayed in Extended Data Fig. 1.
EBSD measurements. We analysed the microstructure of four aggregates (OOM,
PI-1619, POEM22 and T0548) by EBSD. To ensure high-quality scanning electron
microscopy imaging and EBSD analyses, polishing with colloidal silica suspension
was necessary after polishing with diamond paste to remove the mechanical damage
at the specimen surface. EBSD analyses were conducted with a CamScan X500FE
CrystalProbe equipped with an EBSD system30 at Geosciences Montpellier, France.
The operating conditions were a voltage of 15 kV, a current of 2.5 nA and a work-
ing distance of 20 mm. Low-vacuum conditions (4–5 Pa of gaseous nitrogen) were
used to avoid excessive electron charging of sample, in particular grain edges. Data
were acquired and treated with CHANNEL5 software.

Several maps were acquired with sampling step sizes of 0.15 mm, 0.2mm and
0.3mm (see Extended Data Table 1), which cover up a minimum area of 50 mm

3 50 mm. Raw indexation rates were .83%. Data treatment allowed the rare non-
indexed pixels to be filled, if up to six identical neighbours existed with this
orientation. A minimum of 3,000 points was always analysed in each map, ensur-
ing a good statistical analysis.
Dislocation and disclination densities measurements. We denote the compo-
nents of the elastic rotation vector �h as hi, i [ 1,2,3ð Þð Þ along a square grid on the
sample surface, aligned with the unit vectors (�e1,�e2) of the sample reference frame.
The disorientation vector between two neighbouring points A and B isDh�r, where
Dh denotes the disorientation angle and �r the disorientation axis. Dh�r derives
from the rotation mapping one local lattice frame onto the other, or from the

disorientation tensor Dg~g{1
A gB where the orientation tensors gA,gB

� �
, specify-

ing the rotation of the lattice at both locations, A and B, are composed. The
analysis readily shows that the components Dhi of the disorientation vector are14

Dhi~
eijkDgjkDh

2 sin Dhð Þ ð5Þ

The grain boundaries and triple junctions were defined as follows from the ori-
entation maps. First, the disorientation of each pixel with its four (north, south, east
and west) neighbours was examined. When the disorientation exceeded the ‘grain
tolerance angle’ (here 5u), a boundary was defined. Note that, as a consequence,
grain boundaries coincide with pixel boundaries. Once the set of all boundaries was
captured, a flood-fill procedure was applied to search for sub-areas bounded by a
closed boundary. Such sub-areas were defined as grains. A triple junction was
acknowledged when three different grains were detected in a 2 3 2 pixel array.

From the disorientations Dhi between neighbouring points separated by Dxl ,
only six components of the elastic curvature tensor

ke
il~

Dhi

Dxl
ð6Þ

can be captured because differences along the normal direction �e3 are not avail-
able. Using this result, it can be shown from Supplementary equation (28) that
five dislocation densities can be recovered in the present reference frame14, namely
a12,a13,a21,a23,a33ð Þ. The recovery of disclination densities involves the variations

in the elastic curvatures. In component form, equation (6) implies

hij~ejklk
e
il,k ð7Þ

Hence, it is readily seen from equation (7) that the three components
hi3, i [ 1,2,3ð Þð Þare directly obtained from conventional planar measurements.

In contrast to the recovery of dislocation densities, no additional information
about the elastic strain field is needed in this determination. A complete recovery
of the nine disclination densities can follow if the variations of curvatures in the
third direction �e3 become available.

At the present state of the art, the angular accuracy of orientation mapping by
EBSD is about 0.5 u. In the experiments reported here, the spatial resolution was
0.2mm, and the spatial accuracy was about 1 nm. In such conditions, equation (7)
shows that the disclination densities at grain boundaries are inferred with a 10%
error for 5u disorientations, but that the relative error may reduce to about 1%
when the disorientation reaches the highest angles, that is, 90 u in orthorhombic
materials. Therefore, confidence in the results acquired for low-angle boundaries
is limited, but the orientation properties of high-angle boundaries should be
properly rendered. The five available components of the dislocation density
tensor were acquired by using the analysis detailed in ref. 14. With the angular
and spatial resolution indicated above, the relative error in their measurement
also ranges from about 1% to 10%.
Bi-dimensional modelling of disclinations and grain boundaries. For comple-
teness, the two-dimensional edge-wedge model24,25 used in the present work is
briefly recalled. We limit the fields of crystal defects envisioned to uniaxial distribu-
tions of wedge disclinations, which is sufficient for the interpretation of symmetric
tilt boundaries. Thus, we assume the disclination tensor to be h~h33�e36�e3 in the
orthonormal reference frame (�e1,�e2,�e3), all other components being zero. The con-
tinuity condition divh~0 is h33,3~0, implying that h33depends only on the coor-
dinates (x1,x2). In component form, the rotational incompatibility equation reads

hij~ejklk
e
il,k~{ejklk

p
il,k ð8Þ

In the present context, this equation reduces to

h33~k
p
31,2{k

p
32,1~ke

32,1{ke
31,2 ð9Þ

Hence, the only relevant elastic and plastic curvatures are (ke
31,ke

32) and (k
p
31,k

p
32).

Additionally, we note that Tr(kp)~0. Thus, the disclination transport equation,
Supplementary equation (35), is

_h33~ _k
p
31,2{ _k

p
32,1 ð10Þ
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The plastic curvature rate _kp reads, in component form, _k
p
ij~ejklhikVh

l , where Vh
l

denotes the lth component of the disclination velocity vector. Hence, we find

_k
p
31~{h33Vh

2

_k
p
32~zh33Vh

1 ð11Þ

Because the trace of the plastic curvature rate tensor vanishes, the source term sh in
the dislocation transport equation, Supplementary equation (36), feeds only the
edge dislocation densities (a13,a23). Using Supplementary equation (34), we can see
that the motion of these dislocations produces the plastic strain rate components
(_e

p
11,_e

p
12,_e

p
21,_e

p
22):

_e
p
11~{a13Va

2

_e
p
12~_e

p
21~

1
2

(a13Va
1 {a23Va

2 )

_e
p
22~a23Va

1

ð12Þ

where Va
i represent the components of the dislocation velocity vector. The above

relations indicate that out-of-plane motion of the edge dislocations (a13,a23) is
involved in the extension rates (_e

p
11,_e

p
22), whereas their glide is responsible for _e

p
12.

Consistently, the dislocation transport equation reduces to

_a13~_e
p
11,2{_e

p
12,1z _k

p
31

_a23~_e
p
21,2{_e

p
22,1z _k

p
32

ð13Þ

Thus, if all other dislocation densities are initially absent, the dislocation distri-
bution involves only edge densities. The Peach–Koehler relationship provides the
dislocation velocities in terms of the stress tensor, for both the out-of-plane motion
of dislocations (for example, climb or diffusion)

Va
1 ~z

1
Ba

s22a23

Va
2 ~{

1
Ba

s11a13

ð14Þ

and their glide

Va
1 ~z

1
2Ba

(s12zs12)a13

Va
2 ~{

1
2Ba

(s12zs21)a23

ð15Þ

Similarly, the constitutive relationships providing the disclination velocities as a
function of the couple stresses are24

Vh
1 ~z

1
Ba

M32h33

Vh
2 ~{

1
Ba

M31h33

ð16Þ

From the above, it can be seen that the only stress and couple-stress components
relevant to the present problem are (s11,s12,s21,s22) (where usually s12=s21, that
is, the stress tensor is generally non-symmetric) and (M31,M32), respectively. Hence
the Cosserat balance of momentum and moment of momentum equations reduce to

s11,1zs12,2~0

s21,1zs22,2~0

M31,1zM32,2zs21{s12~0

ð17Þ

By taking the curl of equation (17-3) and eliminating the skew-symmetric part of the
stress tensor from equation (17-1,2) and the latter, we can rewrite the above system
(17) as the higher-order equilibrium equations25,31

s
sym
11,1zs

sym
12,2z

1
2

(Mdev
31,1zMdev

32,2),2~0

s
sym
21,1zs

sym
22,2{

1
2

(Mdev
31,1zMdev

32,2),1~0

ð18Þ

where M
dev

is the deviatoric part of the couple-stress tensor.
Constitutive elastic laws including non-locality in the core of defects. In the
following, constitutive elastic laws for stresses and couple stresses are derived, taking
particular account of the nonlocal character of the elastic behaviour, with respect to
the crystal symmetry breaking due to crystal defects. In our bi-dimensional model,
the Frank vector resulting from the distribution of a wedge disclination density h33

over a surface S in the plane (e1,e2) is32

�V~

ð
S

h:�e3dS~V3�e3~

ð
S

h33dS�e3 ð19Þ

In the absence of dislocations, the Burgers vector representing the discontinuity in
displacement arising from this rotational incompatibility is32

�b~{

ð
S

(h|�r):�e3dS~{

ð
S

h33x2dS�e1z

ð
S

h33x1dS�e2~b1�e1zb2�e2 ð20Þ

where �r~x1�e1zx2�e2 is the in-plane position vector. We note that the ratio b=V of
the moduli of the Burgers and Frank vectors

b=V~

Ð
S

(h|�r)t�e3dS

����
����

Ð
S

h:�e3dS

����
����

ð21Þ

defines a length scale characterizing the extent of the defect-containing area. If the
disclination density is evenly distributed over the surface S, b=V is simply

b=V~
1
S

ð
S

rdS ð22Þ

Following recent developments33, we chose the elastic constitutive relations for the

symmetric stress tensor s
sym

and deviatoric couple-stress tensor M
dev

in the linear form

s
sym

~C : eezD : ke

M
dev

~A : kezB : ee

ð23Þ

The dimensions of the elastic constants in the fourth-order tensors are that of

stress C

� �
, stress 3 length B,D

� �
and stress 3 length2 A

� �
. Owing to tensor D,

the inhomogeneity in rotation over the core region induces stresses, whereas the

tensor B gives rise to couple stresses deriving from the inhomogeneity in strain in

this region. Hence, B and D characterize nonlocal elastic behaviour in the defective

crystal. In an isotropic centro-symmetric medium, both B and D are zero.
However, centro-symmetry is broken in the presence of crystal defects, which

yields non-zero B and D tensors33. Similarly, the elastic tensor A induces couple
stresses in the defective regions of the crystals, because the symmetry of the stress
tensor is broken by the fluctuations of the atomic interactions. Hence, a central
issue in the elasticity at the nanometre scale of defect-containing solids consists in

relating the tensors of elastic constants A,B

� �
and D to some characteristic length

scale pertaining to the defect-containing area, such as the ratio of the Burgers to
Frank vector magnitudes introduced above. In the present ‘edge-wedge’ problem,
this length scale is found by analysing the inhomogeneity of lattice curvatures
and strains in the defect-containing areas. The infinitesimal displacement

d�u~ kt
e|�r

� �t
d�r arising from the inhomogeneity of the lattice curvatures ke

31,ke
32

� �
over the vector �r~x1�e1zx2�e2 in the defect-containing area is, in component form

du1~{ke
31x2dx1{ke

32x2dx2

du2~zke
31x1dx1zke

32x1dx2

ð24Þ

Hence, we see, for example from equation (24-1) that the curvature ke
31contributes

to a strain e0e11 and ke
32 contributes to a strain e0e12. Collecting all such terms, we

assume equation (23-1) to be

s
sym
11 ~C1111ee

11zC1122ee
22{D1131ke

31

s
sym
12 ~C1212ee

12zC1221ee
21zD1231ke

31{D1232ke
32

s
sym
21 ~C2112ee

12zC2121ee
21zD2131ke

31{D2132ke
32

s
sym
22 ~C2211ee

11zC2222ee
22zD2231ke

32

ð25Þ

Conversely, in equation (23-2), the infinitesimal rotation d�r~
1
r2

�r|ee:d�r induced

by the inhomogeneity of the in-plane strains ee
11,ee

12,ee
22

� �
over vector�r~x1�e1zx2�e2

produces the curvature components k031,k032

� �
such that

dV3~
1
r2

x1ee
21{x2ee

11

� �
dx1z

1
r2

x1ee
22{x2ee

12

� �
dx2~k031dx1zk032dx2 ð26Þ
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where r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1zx2
2

p
, which gives rise in turn to the couple-stress components . We

therefore conjecture the following relationship between the couple stresses and
elastic curvatures and strains:

M31~A3131ke
31{B3111ee

11zB3112ee
12zB3121ee

21

M32~A3232ke
32{B3211ee

12zB3221ee
21zB3222ee

22

ð27Þ

From the results of ref. 33, the symmetry Bijkl~Dijkl of the elasticities must hold.
Thus, for example, B3111~D1131, which implies at each point in the defective region,
there exist constants B03111,D01131

� �
such that D01131x2~B03111x2



r2 according to

equations (24-1) and (26), a relation where the dimension of D01131 is that of a stress
and the dimension of B03111 is that of stress 3 length squared. Therefore, we may

write B03111



D01131~r2. The same value r2 is obtained for all B0ijkl

.
D0ijkl ratios. r is a

characteristic length scale that sets the dimensions of the area over which inhomo-
geneity of the elastic strains induces a significant couple-stress component.
Adopting the above ratio of the Burgers to Frank vector magnitudes, it is given
the value r 5 1 Å to limit this area to the core region of the defects. Hence, the non-

zero components of the elasticity tensors A,B

� �
and D are simply taken as

Aijkl~mr2, Bijkl~Dklij~mr. In the following simulations, plane strains are assumed
in the (100) plane of the olivine unit cell. Elastic coefficients are taken to be34

C1111 5 320.2 GPa, C2222 5 195.9 GPa, C3333 5 233.8 GPa, C2323 5 63.5 GPa, C1313 5

76.9 GPa, C1212 5 78.1 GPa, C1122 5 67.9 GPa, C1133 5 70.5 GPa and C2233 5

78.5 GPa.
Crossover from atomic to continuous representation of tilt boundaries. The
method for constructing a continuous model of a symmetric tilt boundary in
copper has been described25. By adopting a spatial resolution (mesh size) below
interatomic distances, the atomic structural units that compose the tilt boundary
can be conveniently described by wedge disclination dipoles. The arm length t of
the dipoles is that of the structural units, while their strength V (Frank vector) is
related to the Burgers vector b associated with the units, such that b 5 Vt. We
choose here to model a (011)/[100] tilt boundary of misorientation 60u in olivine,
which was simulated earlier using molecular dynamics techniques21. As shown in
Fig. 4a, the atomic structural units (dashed triangles) exhibit a zigzag configura-
tion in the (100) plane. The Burgers vector associated with these units was
estimated to be b 5 [001] 5 6 Å, which is the lattice constant c of the olivine unit
cell. The [010] direction does not support any component of this Burgers vector.
The arm length of the units being the order of 5 Å, the magnitude of the Frank
vector is found to be approximately V 5 1.2 rad 5 686. This magnitude is used to
set up the wedge disclination densities through equation (19). The resulting field,
shown in Fig. 5 for an element size of approximately 0.05 nm, is used in the

following as the initial disclination field in relaxation simulations, where the
disclinations are allowed to move in their own stress and couple-stress fields until
the overall elastic energy stabilizes. Periodic boundary conditions are used on
vertical boundaries. In this zigzag configuration, the alternative location of the
positive/negative disclinations shown in Fig. 4 was preferred to all others because
it allows consecutive disclination dipoles to form quadrupoles, which contribute
further to energy self-screening. Indeed, we checked that all other configurations
lead to a higher elastic energy.
Shear-coupled boundary migration. In the present context of shear-coupled
boundary migration, a fundamental consequence of non-local elasticity, defined
in equations (25) and (27), is that elastic shear strains generate couple stresses in
the defective areas, which sets disclinations into motion according to equations
(16). Disclination motion implies motion of the associated dislocation density,
which in turn produces plastic shear, even if no dislocation was available before-
hand. More precisely, the mechanism is as follows: the non-zero elastic constant
B3112 induces the couple stress M31under the shear strain ee

12, which leads to
motion normal to the grain boundary of the h33 wedge disclination dipoles (see
equation (16-2)). As a result of this disclination dipole motion (which implies
normal migration of the grain boundary), the associated edge dislocation density
(of [001] character) moves in the defective area along the grain boundary until it
annihilates. In the process, plastic shear strain is produced, although no individual
perfect dislocation can be identified.
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Extended Data Figure 1 | Density of wedge disclinations h33 in the PI-1619
sintered sample. The density is given in radians per square micrometre. The
local Burgers vectors arising from edge dislocations are represented by the blue

arrows: their horizontal and vertical components are, respectively, a13 and a23

(given per micrometre).
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Extended Data Table 1 | Parameters related to the EBSD map recorded in this study

opx, orthopyroxene; sp, spinel.
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