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Digital image correlation (DIC) techniques usually performed on deforming speckle patterns are applied here
on electron diffraction patterns (EDP) in order to map disorientations with high angular resolution, as well as
geometrically necessary dislocation densities and elastic strains. The proposed approach relies on a DIC anal-
ysis which is conducted independently from the microscope calibration. It registers EDP as a whole through
a single and large region of interest whose relative deformation with respect to a reference EDP is described
by a first-order homography. Subpixel registration is performed iteratively in the spatial domain using an
inverse-compositional Gauss-Newton (IC-GN) algorithm which integrates the correction of the optical distor-
tions. Its robustness against large orientation changes as well as its computational efficiency are improved by
mean of an automated and path-independent initial guess which fairly captures the effects of large rotations
on the EDP. Using successive Fourier-Mellin and Fourier transforms based cross-correlation techniques, the
initial guess measures the in-plane rotation and translation between the reference and the target EDP,
respectively. The performances of the technique are illustrated in markedly plastically deformed steels using
two electron diffraction techniques in the scanning electron microscope. A 15% deformed interstitial free
steel is investigated by means of electron backscattered diffraction (EBSD) while a quenched and tempered
oxide dispersed strengthened steel subjected to martensitic transformation is characterized using a recently
developed on-axis Transmission Kikuchi Diffraction (TKD) configuration.
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Keywords:
HR-EBSD

HR-TKD
On-axis TKD
Digital Image Correlation
Geometrically necessary dislocations
crostructures et de M�ecanique
Lorraine, 7 rue F�elix Savart -

ausir).

vier Ltd. All rights reserved.
1. Introduction

Orientation imaging microscopy (OIM) [1,2] is a valuable electron
diffraction based technique for the characterization of the microstruc-
ture of crystalline materials in terms of phase and crystallographic ori-
entation. Electron diffraction patterns (EDP) are most commonly
acquired by reflection in a scanning electron microscope (SEM) using
the electron backscattered diffraction (EBSD) technique. Since its lateral
spatial resolution is limited to about 50 nm [3,4], new SEM-based tech-
niques emerged in the current decade in response to the rising interest
for nanomaterials. In 2012, Keller & Geiss [5] proposed the Transmis-
sion Kikuchi Diffraction (TKD) technique reusing the EBSD hardware. A
thin foil is observed in transmission with a lateral spatial resolution
down to 10 nanometres, opening a new field of applications reviewed
in [6]. In 2016, Fundenberger et al. [7,8] proposed an improved on-axis
configuration, where the scintillator is placed beneath the specimen,
perpendicularly to the beam. As compared to the conventional TKD,
EDP are almost undistorted while a higher scattered electron intensity
is captured, shortening acquisition time by a factor 20 [9,10].

EDP acquired with any of these techniques have been commonly
indexed for most than 20 years using the Hough transform (HT)
method [11] whose accuracy is typically about 0.5�1° [12]. In 2015,
Chen et al. [13] proposed a dictionary approach. As its name implies, a
dictionary of precomputed EDP is first generated such that the orienta-
tion space is uniformly sampled. These patterns are then compared to
the experimental ones using the inner product as a similarity metric in
order to determine orientation with an accuracy typically about 0.7°
and up to 0.2° for a well calibrated system [12,14]. If it overpasses the
conventional HT-based indexation (HTI) in terms of robustness against
noise and accuracy, this approach is computationally much more
demanding. To overcome this drawback, Hielscher et al. [15] proposed
in 2018 a spherical harmonic transform based approach where the dic-
tionary is replaced by a simulated master pattern which alone
accounts for the entire Kikuchi sphere. Very recently, Lenthe et al. [16]
improved the computational efficiency of the technique, such that ori-
entations are determined at a speed close to the HT real time indexing
with an accuracy up to almost 0.1° with refinement.
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Fig. 1. Overview of the proposed method.
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From the above methods, grain internal disorientations can then be
derived from the Euler’s angles. The results still remain less accurate
than those obtained from the high angular resolution EBSD (HR-EBSD)
technique. After the first attempts on semi-conductors in the 900s
[17,18], this technique experienced an impressive expansion in the
20000s under the impetus ofWilkinson et al. [19�21]. Further improve-
ments were proposed, notably by Maurice et al. and Britton et al.
[22�25]. The HR-EBSD technique measures lattice rotation and elastic
strain with an accuracy up to 10�4 (0,006°) on single crystals such as
GaN and SiGe [26] or silicon subjected to four-point bending [27]. It
was also applied for the first time to “off-axis” TKD [28] in 2018 to map
the strain field in the vicinity of a single dislocation in tungsten or more
recently to “on-axis” TKD [29]. In the HR-EBSD method, at least four
non-collinear regions of interest (ROI) are picked up across two high-
resolution EDP (typically 1000 £ 1000 pixels), one reference EDP and
one target EDP. Pairs of ROI are then cross-correlated in order to mea-
sure their relative shift with subpixel accuracy by fitting the near-peak-
region of the cross-correlation function with a Gaussian. Since the tech-
nique is insensitive to hydrostatic deformation, the deviatoric elastic
gradient tensor bFe

associated with the measured displacement field is
obtained by solving iteratively an overdetermined (20�200 ROI are
considered in practice) and weighted system [21,23,27]. Given that the
diffraction signal originates from the surface vicinity for both EBSD [20]
and TKD [30], a plane-stress assumption [20,24] is commonly made to
determine the actual elastic deformation gradient Fe from the devia-
toric one bFe

. As proven by Hardin et al. [31], the stress normal to the
free surface remains negligible in the absence of stress field sources
located near the surface or of large error on the specimen tilt.

During this last year, three independent works by Vermeij & Hoefe-
nagels [32], Ruggles et al. [33] and Shi et al. [34] proposed a ‘global’
HR-EBSD approach. This method is an ’integrated’ Digital Image Corre-
lation (I-DIC) approach [32,34] that correlates EDP signal intensities by
using a unique and large ROI. The relative deformation of the target
ROI with respect to the reference ROI is accounted for by eight degrees
of freedom, which are the components of bFe

. The deformation gradient
is computed iteratively by means of a forward-additive (FA) [32,34] or
an inverse-compositional (IC) [33] Gauss-Newton (GN) algorithm in
order to solve the non-linear DIC problem, i.e. the minimization of the
quadratic difference of intensities between the reference and the
warped target ROI. The ‘global’ approach shows competitive perfor-
mance as well as numerous advantages as compared to the ‘local’ one
[33,34]. Bias related to the number of ROI, their location or weights is
avoided. The absence of ROI overlapping avoids redundant calculations
resulting in similar [33] or even faster [34] analysis times. Remapping
of the EDP [24,25] is included in the GN algorithm and the potential of
cross-grain measurement using this technique (i.e. the reference and
target EDP belong to different grains) was demonstrated very recently
by Vermeij et al. [35] using simulated patterns. Note that global DIC
techniques are also emerging regarding the ‘local’ HR-EBSD technique,
for which a novel remapping technique based on demon registration
was very recently proposed by Zhu et al. [36].

In the present work, we probe the potential transfer to electron
microscopy of existing advanced DIC techniques developed for the
measurement of surface displacements and strains from speckle pat-
terns deposited on mechanical samples [37,38]. Although developed
independently from the works on global HR-EBSD approaches men-
tioned above, our method employs the same tools, i.e. an IC-GN algo-
rithm applied to a large and single ROI. Our method however brings
three notable originalities that are presented below. First, relative
deformations of the ROI are measured independently from the SEM
calibration, which is not the case for other global “integrated” DIC
approaches or for the local approach with remapping. Indeed, the rel-
ative deformation of the ROI are modelled here by a first-order
homography, which is a shape function often met in photogramme-
try to described 2D projective transformations. Second, the correction
of optical distortions is included in the IC-GN algorithm. Third, the
IC-GN algorithm is aided by a fully automated initial guess. It fairly
accounts for the effects of (possibly large) rotations by measuring the
in-plane rotation and translation between disoriented EDP by means
of successive Fourier-Mellin and Fourier transforms based cross-cor-
relation (FMT-CC, FT-CC), respectively. In this manuscript, we first
detail the DIC approach and explain our choices for the algorithms
used. The performances of the technique are then illustrated on plas-
tically deformed metals. First, we analyse a 15% strained interstitial
free (IF) steel where EDP were obtained from standard EBSD. Second,
we further assess our method by analysing a quenched and tempered
oxide dispersed strengthened (ODS) steel where transmission EDP
were acquired by a recent on-axis TKD setup. For these plastically
deformed materials, grain internal disorientation and geometrically
necessary dislocation (GND) density maps are calculated. Our method
is shown to work well for both EBSD and TKD diffraction patterns and
allows analysing fine grain microstructures. Further, despite the
medium resolution and the reduced signal-to-noise ratio of the EDP
as compared to HR-EBSD standards, the method captures very fine
details in the microstructure such as single dislocations or dislocation
networks forming low-angle subgrain boundaries, which a standard
HT-based indexation completely misses.

2. Global DIC approach

This section introduces an alternative ‘uncoupled’ approach that
differentiates itself from the recently proposed global I-DIC
approaches [32�34] in terms of both the initial guess (IG) and the
subpixel registration (SR):

(i) The DIC analysis is independent from the SEM calibration. Rela-
tive deformations of the ROI are described by a first-order (lin-
ear) homography. The calibration parameters as well as their
variation are considered afterwards to analytically deduce the
deviatoric deformation gradient tensor. This results in a simple
implementation of the algorithm and a separation of the DIC
error from the uncertainty on calibration parameters.

(ii) Correction of the optical distortion of EDP is integrated into the
IC-GN algorithmwithout substantially altering its numerical cost.

(iii) Subpixel registration is aided by a fully automated and path inde-
pendent initial guess inspired from the one proposed by Pan et al.
[39] for speckles patterns. Composed of successive FMT-CC and
FT-CC analyses, this CC-based method ensures that the IC-GN
algorithm converges despite the presence of rotation discontinu-
ities such as at subgrain boundaries.

In addition to detailing the method, whose main steps are
summed up in Fig. 1, this section also outlines the reasoning leading
to the choice of the algorithms used.



Fig. 2. Sketch illustrating the considered frame < ¼O
!
X1 ;

!
X2 ;

!
X3

� �
, the scintillator and an

ROI of sizeM £ N pixels for which the centre is located at
!
X0 with respect to the pattern

centre (PC).
!
X and

!
ξ give the coordinates of a point in the ROI with respect to the PC or

its centre, respectively.

Fig. 3. Effect of each deformation parameter composing the first-order homography
(Eq. (5)).
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In the following, an orthonormal frame < ¼ Oð!X1 ;
!
X2 ;

!
X3 Þ

attached to the diffraction volume is considered.
!
X3 is perpendicular

to the scintillator while
!
X1 and

!
X2 are aligned with the screen width

and height, respectively (Fig. 2). DD refers to the sample to detector
distance and PC denotes the pattern centre of the reference pattern.
On the scintillator, the vector X ¼ x1 x2ð ÞT gives the location with
respect to the PC and X0 ¼ x01 x02ð ÞT is the geometric centre of a
ROI of size M £ N pixels. For points belonging to the ROI, ξ indicates
their position with respect to its centre, i.e. j ¼ X�X0. Let r(ξ) and
t(ξ) be the functions describing the intensity within the reference
(‘REF’) and target (‘TGT’) ROI, with mean value r and t, respectively,
such that one can define r

» ðjÞ ¼ rðjÞ�r and t
» ðjÞ ¼ tðjÞ�t.

2.1. ‘uncoupled’ DIC based on a homography

Image registration methods are either area-based or feature-based.
The second are acknowledged to encounter fewer limitations [40] and
should be preferredwhen images contain sufficient distinctive and easily
detectable objects. EDP contain many salient features such as line inter-
sections which are suitable for an automated detection. The numerous
symmetries in EDP however make their distinction questionable. On the
other side, none of the major limitations of area-based methods [40]
listed hereafter is nowadays prohibitive anymore. (i) The requirement of
‘remarkable’ content of the ROI is fulfilled, as it has already been proven
by the local HR-EBSD technique. (ii) The increasing available computing
power and the recent progress in DIC algorithms enable complex defor-
mations of the ROI to be accounted for, which is paramount to avoid loss
of accuracy [40,37,38]. (iii) Pattern filtering and the use of robust correla-
tion criterions reduce the sensitivity of the similarity degree between
two ROI to intensity changes such as noise or varying illumination.

An area-based approach is consequently developed. The zero-
mean normalised cross-correlation criterion CZNCC (Eq. (1)) and the
zero-mean normalized sum of squared difference criterion CZNSSD

(Eq. (2)) are adopted for the initial guess and subpixel registration,
respectively. These are different but related criterions [41] which
offer the most robust noise-proof performance while being insensi-
tive to linear brightness variations [40].

CZNCC ¼
X
j

r
» ðjÞ: t» ðjÞ
D r

»
:D t

»

" #
where D r

» ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

r
»

j
� �2s

and D t
» ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

t
»

j
� �2s
ð1Þ

CZNSSD¼
X
j

r
»

j
� �
D r

» �t
»

j
� �
D t

»

" #2

ð2Þ

Recovering lattice rotation and elastic strain implies to catch their
effect on the scintillator with subpixel accuracy [21]. Since the
displacement field across EDP is assumed to be continuous, it can poten-
tially be described by a parametric model known as the shape (or warp)
functionW(p) where p is the vector containing the deformation param-
eters. The matrix W(p) operates on each location ξ within the (unde-
formed) reference subset, such that the matching position ξ 0 within the
(deformed) target subset can be expressed as:

j0 ¼ W pð Þ:j: ð3Þ
Depending on the number of parameters and their arrangement, dis-
placements as well as displacement gradients can be modelled in a lin-
ear or more complex way. Following recommendations in [37,38], the
ROI has to be taken as large as possible providing the shape function
reasonably fits the underlying displacement field. If it is unfortunately
not possible, this area can be divided into smaller regions where the dis-
placement field is simpler, as it is done in the local HR-EBSD technique.

The first-order homography is composed of 8 deformation param-
eters hij stored in p as follows:

p¼ h11 h12 h13 h21 h22 h23 h31 h32ð ÞT ð4Þ
and a usual parametrization [42,43] is given by:

W ðpÞ¼
1þh11 h12 h13
h21 1þh22 h32
h31 h32 1

0@ 1A: ð5Þ

Fig. 3 illustrates the effect of each deformation parameter. The resem-
blance with transformations observed on the scintillator is striking.

In the following, we consider ‘homogenous coordinates’ (HC)
which are often preferred to Euclidian coordinates (EC). Indeed, pro-
jective transformations can then be described by a matrix like in Eq.
(5) and all points are represented with finite coordinates, even those
at infinity. The qualifier ‘homogenous’ originates from the homoge-
neous property:

8 λ2R�; j ¼ λ:j: ð6Þ
Given a point on the scintillator j ¼ ξ1 ξ2

� �T in EC, it admits an infin-
ity of possible representations by means of a three-dimensional vector j
¼ u v wð ÞT in HC provided that u2 þ v2 þw2 6¼ 0. Let us assume
that w is non-zero. One can thus perform computations in HC and then
simply divide the components of ξ byw according to the ‘homogeneous
property’ to get back to EC (i.e. ξ1 ¼ u=w and ξ2 ¼ v=w). In other words,
when the last component is 1 in HC, the others correspond to the
Euclidian coordinates. j ¼ ξ1 ξ2 1

� �T is consequently chosen as a
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convenient representation during the DIC analysis, where ξ1 and ξ2
are calculated from the absolute location in EC of X and X0 within
the EDP. Knowing the pattern centre location (i.e. x01 and x02) is
thus not required at this stage. Eqs. (3) and (5) lead to

ξ 0
1

ξ 0
2

1

0B@
1CA ¼

ð1þ h11Þ:ξ1 þ h12:ξ2 þ h13
h31:ξ1 þ h32:ξ2 þ 1

h21:ξ1 þ 1þ h22ð Þ:ξ2 þ h23
h31:ξ1 þ h32:ξ2 þ 1

1

0BBBBB@

1CCCCCA ð7Þ

after dividing all components by the third one. The latter is reasonably
assumed to be non-zero as the homography is not likely to be degener-
ated [42] (i.e. the warped target ROI is not reduced to a line).

At the end of the DIC analysis, all deformation parameters of the
homography are obtained. The SEM calibration is then considered in
order to interpret them in terms of lattice rotations and elastic strains.
First, the deformation parameters hij are corrected to account for the
variation of the projection geometry. The PC displacement is responsi-
ble for a uniform translation by a vector ðDPC

1 D
PC
2

ÞTof the target EDP
with respect to the reference. Variations of DD also generate an isotro-
pic scaling by a factor a ¼ DDTGT=DDREF with respect to the pattern
centre of the target EDP. As shown on the Fig. 3 and detailed in the
Appendix A, the DIC captures these effects (planar translations in h13
and h23, scaling in both h11 and h22) so that the corrected parametersbhij are deduced from the measured ones hij as follows:

hb11 hb12 hb13
hb21 hb22 hb23
hb31 hb32 1

0BB@
1CCA

¼

h11þ1�g1:h31
a

� 1
h12�g1:h32

a
h13�g1

a
h21�g2:h31

a
h22þ1�g2:h32

a
� 1

h23�g2

a
h31 h32 1

0BBBB@
1CCCCA

where gi¼a:D
PC
i þ x0i: a� 1ð Þ

ð8Þ

Eq. (7) is now rearranged in order to replace the homography in
the context of the HR-EBSD problem,

x01
x02
x03

0@ 1A¼

DD: bF e
11:x1þbF e

12:x2þbF e
13:x3

� �
bF e
31:x1þbF e

32:x2þbF e
33:x3

DD: bF e
21:x1þbF e

22:x2þbF e
23:x3

� �
bF e
31:x1þbF e

32:x2þbF e
33:x3

x3

0BBBBBBBB@

1CCCCCCCCA
ð9Þ

where x3 ¼ x03 ¼ DD and bF e
33¼1. To this end, its right side is multiplied

by the sample-to-detector distance DD using the homogeneous property
while ξ is expressed as a function of the pattern centre (i.e. x01 and x02).
Detailed calculations are available in Appendix B. Term-by-term identifi-
cation of the so-rearranged Eq. (7) with Eq. (9) analytically gives bFe

:

bF e

11
bF e

12
bF e

13bF e

21
bF e

22
bF e

23bF e

31
bF e

32 1

0BB@
1CCA ¼

1þ bh11 þ bh31:x01
1�bh31:x01�bh32:x02

1þ bh12 þ bh32:x01
1�bh31:x01�bh32:x02

bh13�bh11:x01�bh12:x02�bh32:x01:x02�bh31:x201
DD: 1�bh31:x01�bh32:x02

� �
1þ bh21 þ bh31:x02
1�bh31:x01�bh32:x02

1þ bh22 þ bh32:x02
1�bh31:x01�bh32:x02

bh23�bh21:x01�bh22:x02�bh31:x01:x02�bh32:x202
DD: 1�bh31:x01�bh32:x02

� �
DD:bh31

1�bh31:x01�bh32:x02

DD:bh32

1�bh31:x01�bh32:x02
1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

ð10Þ
As a consequence:

(i) A first-order homography is perfectly suitable for the HR-EBSD
problem as it does not under-match nor over-match the defor-
mation occurring between the reference and the target EDP.

(ii) A single ROI is consequently necessary and sufficient. Ideally, it
should be taken as large as possible [37,38] such that the DIC
analysis will consider the EDP as a whole through a unique and
large ROI.

(iii) The bF e
ij components are deduced analytically from the correctedbhij parameters and vice-versa (see Eq. (14) in the next section).

If the shape function describes the displacement field, its mea-
surement is the aim of the Lucas-Kanade optical flow algorithm [44].
Accounting for relative deformation however produces non-linearity
of the sum of squared difference criterion, whose minimization
becomes computationally intensive. Fortunately, surface displace-
ment and deformation measurement by DIC has experienced during
the last decade tremendous improvements that are reviewed in
[37,38]. The Lucas-Kanade method is now applied through computa-
tionally efficient iterative spatial cross-correlation algorithms with
subpixel accuracy. The most commonly used are the forward additive
Newton-Raphson (FA-NR) algorithm introduced by Bruck et al. [47],
the forward additive Gauss-Newton (FA-GN) and the inverse compo-
sitional Gauss-Newton (IC-GN) algorithm proposed by Baker & Mat-
thews [45,46].

Providing that the shape function W is differentiable with respect
to p, such algorithms compute the increment Dp of the deformation
vector p at each iteration until a convergence criterion is fulfilled or a
maximal number of iterations is reached. As their name implies,
these algorithms differentiate themselves through their optimization
algorithm and through the manner p is updated, using either a for-
ward additive scheme

p ¼ pþ Dp ð11Þ
or an inverse compositional scheme

W ðpÞ¼W ðpÞ B W�1ðDpÞ: ð12Þ
For the second scheme, the shape functionW has also to be invertible.

The IC-GN algorithm has been adopted here because it is up to
5 times faster than the FA-NR algorithm [48] while showing better
noise-proof performance with similar accuracy [49]. It has also the
same level of accuracy than the FA-GN algorithm and considering a
homography, Baker & Matthews [43] showed that both algorithms
converge at the same rate. However, the reference ROI remains
unchanged along iterations with the inverse-compositional scheme,
resulting in a significant drop of the calculation effort. Indeed, the
GN��Hessian matrix (see [43]) remains unchanged for a given refer-
ence since it is computed for p ¼ 0.

2.2. Correction of the optical distortion

Although EBSD detectors aim at minimizing optical distortion, a
correction is required for accurate strain measurements [45]. Such
correction is integrated into the IC-GN algorithm by considering
the corrected locations bj ¼ bX�Xb0 indicated by the red dots in
Fig. 4a instead of the initial regular grid (black dotted lines). The
images of these points by the homography directly gives the cor-
rected coordinates bj0 to interpolate within the (distorted) target
pattern (red dots in Fig. 4b). The computational cost of the DIC anal-
ysis remains (quasi) unchanged. Assuming that the optical distor-
tion is identical for all EDP, the corrected bj are precomputed only
once. As compared to a regular grid where each ξ is located on



Fig. 4. Scheme illustrating the relative deformations between the reference ROI (a) and
the warped target ROI (b) under a homography in the absence of optical distortion (ROI
edges in black). The red cross indicates the optical centre while the red dots are the
corrected locations to interpolate within the optically distorted patterns. Note that
radial and tangential distortion effects are exaggerated here. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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integer pixel (dotted lines in Fig. 4a), such a correction will only
result in additional interpolations of the reference image and its
gradients during the computation of the GN��Hessian matrix (red
spots in Fig. 4a). Note that its cost is already negligible thanks to
the inverse-compositional scheme.

2.3. A fully automated and cross-correlation based initial guess

The GN algorithm converges to a local extremum and should
therefore be initialised with a vector of deformation parameters p0

sufficiently close to the solution. The accuracy of the initial guess
directly affects the convergence characteristics of both FA-GN and
IC-GN algorithms [38]. As illustrated in the context of HR-EBSD by
Vermeij and Hoefnagels [32] and Ruggles et al. [33] by using
dynamically simulated patterns, the convergence speed decreases
with increasing disorientation between the initial guess and the
true solution. Divergence is likely to occur for differences over » 1°,
which is of the order of the Hough-transform based indexation
uncertainty. Besides accuracy concerns, different strategies exist to
provide an initial guess [38]. The algorithm can be initialized at one
point in the orientation map from the solution at neighbouring
points. Such an approach is however path dependant and it is
expected to fail in the presence of rotation discontinuities like at
subgrain boundaries. It should also be reliability-guided to avoid
error propagation [46]. Path independent approaches circumvent
these limitations.

From this standpoint, a self-contained and path independent
method proposed by Pan et al. [47] for correlating speckle patterns
that differ by a scale, a translation and an in-plane rotation up to
§180° is transferred here to electron microscopy. It pre-aligns images
in a fully automated way. Its working principle is based on the four
following steps:

1. Measurement of the in-plane rotation u3 (around
!
X3 ) by mean of
a Fourier-Mellin transform based cross-correlation (FMT-CC).
2. Rotation of the reference ROI around its centre by u3.

3. Measurement of the remaining planar translation
!
D ¼ Dx1

!
X1 þDx2

!
X2

by mean of a Fourier transform-based cross-correlation (FT-CC).
4. Initialisation of the eight deformation parameters of the homog-

raphy according to (u3,Dx1, Dx2).

Note that the method has been adapted to the specificities of elec-
tron microscopy. The implementation of the first three steps is
detailed and illustrated in the Appendix C. As highlighted for both
on-axis TKD and EBSD patterns in Fig. 5, the method fairly accounts
for the effect of disorientation. It applies similarly for both EBSD and
on-axis TKD techniques, except the additional use of a mask with
noise on the reference pattern in the case of on-axis TKD (Fig. 5a
(top)) in order to remove the transmitted beam and diffraction spots.
Otherwise the latter would act as anchors, leading to an erroneous
measurement of the translation (see Appendix C).

The homography is initialized from the measured rotation and
translation. Pan et al. [47] consider a first-order affine shape function
whose deformation parameters corresponds to the six first parame-
ters of the homography. Following [47], the initialization is taken
here as

p0 ¼ cos u3ð Þ�1 �sin u3ð Þ Dx1 sin u3ð Þ cos u3ð Þ�1 Dx2 0 0
� �T

;

ð13Þ
where the two additional parameters h31 and h32 of the homography
are simply set to zero. The warped target ROI remains a square when
using this ‘partial’ initialization (Fig. 5c). It may become problematic
with increasing rotations, especially concerning EBSD patterns whose
distortion is greater than those with the on-axis TKD configuration. A
‘complete’ initialization is also possible but requires an a priori
knowledge of the SEM calibration. The accuracy of SEM calibration is
not critical at this stage as the objective is to provide an initial guess.
The rotation angles u1 and u2 can indeed be estimated from transla-
tion by taking the arc-tangent of Dxi/DD (i ¼ 1; 2Þ. In this case, a rota-
tion matrix is then computed and provides an estimation of Fe. All
the deformation parameters are finally initialised as follow:

h11 h12 h13
h21 h22 h23
h31 h32 1

0@ 1A ¼ 1

DDþ bF 31:x01 þ bF 32:x02

K11 DD:bF e

12�bF e

32:x01 K13

DD:bF e
21�bF e

31:x02 K22 K23bF e
31

bF e
32 1

0BB@
1CCA

ð14Þ
Where

K11 ¼ DD: bF e
11�1

� �
�2:bF e

31:x01�bF e
32:x02

K22 ¼ DD: bF e
22�1

� �
�bF e

31:x01�2:bF e
32:x02

K13 ¼ DD: bF e
11�1

� �
:x01 þ bF e

12:x02 þ bF e
13:DD

h i
�bF e

31 :x201�bF e
32:x01:x02

K23 ¼ DD: bF e
21:x01 þ bF e

22�1
� �

:x02 þ bF e
23:DD

h i
�bF e

31:x01:x02�bF e
32 :x202

where the bF e
ij components are obtained by normalizing Fe by Fe33.

Indeed, Eq. (14) is the reciprocal of Eq. (10) where bF e
33 ¼ 1. Note that

it can be used more generally to initialize the homography from any
estimation of the elastic deformation gradient tensor expressed in <,
such as the one provided by the indexation for instance (i.e. Fe is a
rotation matrix built from the disorientation between the target and
the reference crystal).

3. Materials and methods

3.1. Specimens and data acquisition

Two plastically deformed materials are investigated using two dif-
ferent SEM-based techniques:

(i) A bulk specimen of IF steel subjected to a quasi-static uni-axial
tensile test up to 15% strain, mechanically polished and observed
using EBSD.

(ii) A thin foil of tempered 9Cr-ODS martensitic steel obtained by twin-
jet electro polishing and characterized by means of on-axis TKD.
The ODS sample is obtained by austenizing at 1050 °C for 10 min,
quenching with helium gas and then, tempering at 600 °C for
20 mn followed by air cooling. Strong plastic shear deformations



Fig. 5. Examples of image pre-alignment. (top) on-axis TKD patterns disoriented by » 20° (bottom) EBSD patterns disoriented by » 23° (a) Reference subset, with a mask applied in
the case of TKD. (b) Target subset. (c) Warped target subset according to the initial guess.

Fig. 6. (a) On-axis TKD pattern acquired in the ODS steel at the location indicated by a
cross on Fig. 8a. (b) After filtering. (c) After applying a mask to hide the spots.
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are generated during the martensitic transformation. Then, partial
recovery of strains and dislocation substructures occurs during the
tempering treatment.

All presented data are acquired with a FEG-SEM Zeiss Supra 40
and Bruker’s ESPRIT 1.9 software. The SEM is equipped with two
Bruker e� Flash HR+ cameras, one for EBSD and one associated to a
Bruker OPTIMUS detector for on-axis TKD (both configurations are
illustrated in Fig. 1 in [48]) for which a forescatter electron detector
(FSD) composed of three diodes is also placed at the bottom of the
scintillator. The obtained colour images provide qualitative informa-
tion in a very sensitive way on crystal orientation, surface topography
or phases [49] or even magnetic surface domains [50]. Table 1 sums
up the acquisition parameters. In comparison with HR-EBSD stand-
ards, 16-bits grayscale patterns are recorded without background
correction with a medium resolution of 600 £ 600 px2 using short
exposure times. On the one hand, acquisition time is limited by beam
drift considerations, especially regarding the ODS steel. On the other
hand, plastic deformation mostly degrades the sharpness of the Kiku-
chi patterns which cannot be significantly improved by longer expo-
sure times.

3.2. SEM calibration

SEM calibration is performed with the Bruker’s ESPRIT 1.9 soft-
ware for both EBSD and on-axis TKD datasets. It is based on the itera-
tive pattern fitting method [51]. Despite the resolution of the Hough-
transform is set to the maximum, this method is insufficient for accu-
rate elastic strain measurement [22,45] since the pattern centre is
located with an uncertainty typically the order of 0.5% of the image
width. Although this is known to be responsible for phantom strains
of the order of 10�3, localizing the pattern centre with accuracy is still
a challenging task that has not been achieved yet on such experimen-
tal cases, because of pattern blurring and the miss of any easily
Table 1
SEM settings for data acquisition.

Material Technique / Magnification Voltage [kV] Current [nA] Working dista

IF steel EBSD / x1600 20 7.1 15.26 / 16.29
ODS steel on-axis TKD / x37k 30 1.25 3.75 / 24.63
identifiable strain-free reference. Besides from the precise knowledge
of the calibration parameters, their variation across the orientation
map is also critical since neglecting them may lead to spurious strain
components of the order of » 4:10�3 [23,27,45]. These variations are
thus estimated knowing the map step size and the SEM configura-
tion. Finally, the optical distortions can also generate phantom strains
having similar magnitudes [52]. Their effects are the most pro-
nounced when moving away from the optical centre, i.e. near the
edges of the EDP which are particularly noisy regions here due to the
thermomechanical state of the investigated materials (Figs. 5 and 6).
Because of this and the current limitations on the SEM calibration,
the optical distortion correction option is not used in the following,
especially since the values of the aberrations for the used detectors
are unknown and not measured.

3.3. Data processing

The filtering of the raw EDP and the whole DIC analysis are pro-
grammed in Fortran and implemented in the ATEX-software [53]
developed in our lab. The IC-GN algorithm is performed according to
[54] such that the CZNSSD criterion (Eq. (2)) is minimised, EDP and
nce / Detector distance [mm] Step size [nm] Exposure [ms] / Frame averaging

220 75 / 2
10 40 / 1
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their spatial gradients are interpolated considering biquintic B-
splines, consistently with recommendations in [37,38]. All necessary
equations are detailed in [54] except the convergence criterion and
the Jacobian that are given in the Appendix D. According to common
values from the literature [47,55,56], the convergence criterion of the
IC-GN algorithm is set to 0.001 px. ROI of size 512 £ 512 px2 and
471 £ 471 px2 are extracted from the centre of the EDP for the initial
guess and the subpixel registration, respectively.

As compared to EBSD and conventional TKD, on-axis TKD patterns
display a much larger dynamics in the intensities (Fig. 6a) for which no
dedicated treatment is yet proposed in the literature. In order to
improve the EDP, a high-pass log filter (Appendix E) is applied for con-
tinuous background removal, followed by median and Gaussian filters
with a radius of 1 pixel to reduce high-frequency noise. Intensities are
then normalised (Fig. 6b). In the case of the reference pattern only, a
mask with noise is also applied during the whole DIC in order to hide
the transmitted beam and most of the diffraction spots. Such a mask is
set by the intensities that exceed a threshold defined by the user.
4. Applications

This section illustrates the performances of the technique. Results will
be discussed in terms of grain internal disorientations and geometrically
necessary dislocation densities, which are of valuable interest for the
understanding of deformationmechanisms and for strain gradient crystal
plasticity modelling [57]. In most of crystalline materials, the emergence
of disorientations in the course of plastic deformation is correlated with
the formation of dislocations structures having a non-null net Burger’s
vector, such as dislocation pile-ups, cells or subgrain boundaries. The geo-
metrically necessary dislocation densities relate lattice rotation gradients
(curvatures) to such arrangements of dislocations and can be estimated
according to the Nye-Kr€oner theory [58�60]. Because of the insufficient
accuracy on SEM calibration (see section 3.2), elastic strains remain ques-
tionable and are consequently neglected in the calculation of the GND
densities. This is a reasonable and usual assumption for the study of plas-
tically deformedmaterials bymeans of HR-EBSD [61,62].

Computations are performed on a per-grain basis. A tolerance angle
of 5° is used to define grain boundaries. For each grain, the reference
pattern is automatically selected by determining the gravity centre of
the grain and then by looking for the closest pattern having a band
contrast which worth at least 90% of the maximum observed within
the grain. DIC computations are performed in the scintillator frame <
but results are then expressed in the sample frame. The intra-granular
disorientation at each point in a given grain is calculated with respect
to the reference of the grain. The GND densities are then derived from
the lattice curvature k approximated with a finite difference scheme
applied on the disorientations u ¼ u1 u2 u3ð ÞT as follows [60]:

kij ffi Dui=Dxj; ð15Þ
whereDxj is the step size of the orientation map in the direction xj. By
neglecting the elastic strains, the Nye’s dislocation tensor a is then
obtained by

a ffi tr kð Þ:I�kT : ð16Þ
Its entrywise norm

ka k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aij ¢aij

p ð17Þ
will be displayed hereafter. Results are expressed inmm�1 but they can
be converted in m�2 by dividing them by the magnitude of the burgers
vector b. Here, if b = 0.25 nm, 1 mm�1 corresponds to 4 � 1015 m�2.

4.1. EBSD: IF steel

Results for the IF steel are displayed on Fig. 7. Note that the EBSD
patterns shown in Fig. 5 (bottom) are extracted from this dataset.
Black crosses indicate their location on Fig. 7a. For better colour visu-
alisation purpose, disorientation angles ranging from 0 to 8° are plot-
ted except within regions delimited by a black dash-line. In these
regions, larger disorientations up to » 12° are present and the scale is
consequently adjusted. The disorientation map with the HTI (Fig. 7a)
and the associated map of the Nye’s tensor norm (Fig. 7b) should be
compared to those obtained using the DIC analysis aided by the pro-
posed CC-based IG in Fig. 7c and 7d, respectively. For a better com-
parison with the HTI, profiles of the disorientations and GND
densities are presented in Fig. 9a and c, respectively. The disorienta-
tions calculated from the HTI are clearly noisy, far more than those
from the DIC analysis. This noise leads inevitably to an erroneous esti-
mation of the spatial derivatives involved in the GND density calcula-
tion. The DIC analysis reveals thus dislocation patterns and low-angle
subgrain boundaries (Fig. 7d) that a standard HTI mostly misses
(Fig. 7b). The latter boundaries are in agreement with the small orien-
tation changes observed on the simulated FSD image (Fig. 7f). Such a
coloured image is computed using the ATEX-software [53] by inte-
grating the lower third of EDP with blue, green and red channels.
Each one is catching intensities from the left, the middle or the right
side of the pattern, respectively, just as real FSD diodes would do in
practice.

4.2. On-axis TKD: ODS steel

Fig. 8 shows the results obtained for the ODS steel by means of on-
axis TKD, for which case a typical reference pattern is displayed in
Fig. 6. The latter is one of the highest quality patterns amongst the
dataset. As expected, the disorientation map deriving from the HTI
(Fig. 8a) and the associated Nye’s tensor norm (Fig. 8b) miss most of
the microstructure details which are visible on the experimental FSD
image shown in Fig. 8d. Indeed, only large structures such as the sub-
grain boundaries are reasonably observed Fig. 8b, as also highlighted
by the profiles in Fig. 9d. Note that the experimental FSD image
accounts here for the whole sample thickness while the EDP signals
only originate from the electron outlet surface [30]. The disorienta-
tion map and the associated entrywise norm of the Nye’s tensor after
subpixel registration (Fig. 8e, f) show that the technique is sensitive
to fine details of the microstructure observed in the FSD image
(Fig. 8d). As shown by the disorientations map predicted by the CC-
based initial guess alone (no IC-GN) in Fig. 8c, the latter can deal with
abrupt orientation changes such as the ones highlighted by the dis-
orientation profiles in Fig. 9b.

5. Quantitative analysis and influence of the initial guess

The influence of the initial guess strategy as well as the discrepan-
cies between HTI and DIC disorientation maps are now quantified. To
this purpose, three initial guess strategies are tested in the IF steel data-
set. The first two are using the CC-based method (FMT-CC + FT-CC),
namely the ‘partial’ initialisation of the homography (i.e. no projective
effects, h31 ¼ h32 ¼ 0) and the ‘complete’ one, respectively. The third
approach is HTI based, i.e. all deformation parameters of the homogra-
phy are initialised according to Eq. (14), where the elastic deformation
gradient tensor is approximated by a rotation matrix deduced from the
crystallographic orientations as measured by the HTI.

For each one of the » 79,000 points composing the dataset, the
number of iterations needed for convergence of the IC-GN algorithm
is recorded. In addition, the average and the standard deviation of
the absolute residuals at the beginning of the IC-GN algorithm (i.e.
according to the IG) and at the end (i.e. after the SR) are also recorded.
They will be denoted as ‘initial’ and ‘final’ residuals in the following,
respectively. The “absolute residuals” denote the image formed by
the absolute value of the intensity difference between the reference
subset and the warped target subset. Note that the reference and the
warped target subsets have a mean intensity of 0 with a standard



Fig. 7. Results in the IF steel. (a) Grain internal disorientation map derived from HTI. Black crosses indicate the location of the patterns shown in Fig. 5. (b) Associated norm of the
Nye’s tensor. Similarly, (c) and (d) correspond to the results of the DIC analysis which is aided by the proposed CC-based IG while (e) is the disorientation map obtained when using
the HTI as IG. To enhance colour variation, disorientation varies from 0° to 8° except within regions delimited by black dash-lines where it goes from 0° up to 12° (f) Simulated FSD
image.
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deviation of 1 since the CZNSSD criterion is considered. Such images
are extracted from the ODS and IF steel dataset in Fig. 9e-e’ and in
Fig. 10a, respectively.
Regarding the ODS steel, the examples are taken from a subgrain
where the target pattern is disorientated by » 4° with respect to the
reference. Fig. 9e’ shows the final absolute residuals when using the



Fig. 8. On-axis TKD map in ODS steel. (a) Grain internal disorientation map derived from HTI. The black cross indicates the reference pattern displayed in Fig. 6. (b) Associated norm
of the Nye’s tensor. Similarly, (e) and (f) correspond to the results of the DIC analysis which is aided by the proposed CC-based IG. (c) Disorientation map estimated by the CC-based
IG method alone (no IC-GN). (d) Experimental forecaster electron diffraction image.
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‘complete’ CC-based initial guess. A visual inspection is hard due to
the transmitted beam and the diffraction spots left visible on the tar-
get while a mask is applied on the reference (Fig. 6c). However, the
absolute residuals have a mean value which is twice smaller than
those obtained when warping the target subset according to the HTI
alone in Fig. 9e (m=0.614 vs 1.162). From this standpoint, the dis-
orientation profile from the DIC analysis (black curve in Fig. 9b) is
more reliable than the HTI one (red curve), which, in addition to



Fig. 9. Profiles of the grain internal disorientations from the HTI and from the DIC analysis in the IF steel (a) and in the ODS steel (b) dataset, whose location is indicated in Fig. 7a and
in Fig. 8a, respectively. Similarly, (c) and (d) shows the profiles of the norm of the Nye’s tensor. (e) and (e’) are the absolute residuals with average valuem and standard deviation s
according to the HTI alone and the DIC analysis aided by the CC-based IG, respectively.
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noise, differs by a relatively constant gap of less than 0.5° within the
considered subgrain (1.7 to 2 mm). Such a gap can be attributed to an
error of the indexing software which is not dedicated for “on-axis”
TKD. The band asymmetry is indeed higher in transmission than in
reflection (i.e. EBSD) so the HT is more likely to detects excess lines
located at band edges rather than the band centres as discussed in
[10]. This is why only the IF steel dataset is considered in the follow-
ing for a fairer comparison with the HTI.

Regarding the IF steel dataset, two of the most disoriented EDP
(» 12°) are considered in Fig. 10a, which shows the final absolute
residuals obtained after SR when using the ‘complete’ CC-based IG
(their frequency distribution is also superimposed on the figure). Its
mean value (m=0.297) and standard deviation (s=0.269) are typical
of the dataset. As indicated indeed by the dotted-arrow lining inset
(a) to (b) in Fig. 10, such values correspond to the most encountered
cases amongst the dataset (solid black curve). Note that the distribu-
tions of the standard deviation of the residuals are not displayed
here, but they follow very similar trends than in Fig. 10b. Both the
‘complete’ and the ‘partial’ initialisation lead to final absolute resid-
uals having an average of 0.283 and a standard deviation of 0.286,
typically. From this standpoint and since no remarkable misalign-
ment is visually observed on the example (Fig. 10a), it arises that the
“noise level” within the EDP prevents the average of the absolute
residuals to be smaller than » 0.2 (Fig. 10b).



Fig. 10. (a) Absolute residuals after the subpixel registration when aided by the proposed CC-based initial guess, on which their distribution of mean value m=0.297 and standard
deviation s=0.269 is superimposed. Note that the highest intensities (>1.4) are related to a mask and dust on the scintillator. Here, the considered EDP are two of the most disori-
ented ones from the IF steel dataset ( » 12°). (b) Distribution of the average of the absolute residuals before (IG) and after the subpixel registration (SR). (c) Evolution of the average
of the absolute residuals as a function of the disorientation.
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Besides the distributions in Fig. 10b, the evolution of the average
of the residuals as a function of the disorientation angle is plotted in
Fig. 10c. As expected, the final residuals (solid curves) are the small-
est when the IC-GN algorithm is aided by the CC-based initial guess.
Moreover, no noticeable difference is observed between the ‘com-
plete’ and ‘partial’ initialisations (black and blue solid lines in
Fig. 10c), consistently with the distributions in Fig. 10b. Regarding
the initial residuals (dotted lines), the HTI-based initialisation leads
to residuals about twice higher than with the proposed CC-based ini-
tial guess. Regarding the ‘partial’ and ‘complete’ initialisations more
precisely, accounting for the projective effects (i.e.h31 and h32) results
in » 6% smaller initial absolute residuals (distributions in Fig. 10b of
mean value 0.384 and 0.361, respectively).

These discrepancies between the three initial guess strategies
directly impact the computational efficiency of the IC-GN algorithm.
When the CC-based initial guess is used the algorithm indeed
converges » 80% faster than with the HTI-based initialisation
(75 iterations in average against 40, respectively) as showed in
Fig. 11a. This compensates its CPU-time extra-cost, especially since
only the points converging in less than 200 iterations are considered
here for a fairer comparison (»260% more iterations otherwise).
Regarding the two CC-based strategies more specifically, a ‘partial’
initialisation lead in average to » 10% more iterations as compared to
a ‘complete’ initialisation (Fig. 11a, grey and blue bar charts). Note
that, there is no such a difference between the ‘complete’ and the
‘partial’ initialisations in the ODS steel, namely 86 iterations in aver-
age with a standard deviation of 26 iterations, for both methods. This
is because the on-axis configuration leads to a lower pattern distor-
tion due to the gnomonic projection.
In the IF steel, a convergence in less than 200 iterations concern
99.7% and 90.9% on the dataset when using the CC-based or the HTI-
based strategies, respectively. In the first case, the 0.3% discarded
points subjected to a slower convergence (i.e. > 200 iterations) dis-
play EDP of very poor quality. The convergence issues concern 9.1%
of the dataset when using the HTI as IG and importantly, divergence
(i.e.> 1000 iterations) even occurs for 4.2% of the dataset as indicated
by the black pixels in the disorientation map in Fig. 7e. Such conver-
gence issues are likely to happen as soon as disorientations higher
than 3�3.5° are present, which coincides with the appearance of
higher final residuals with the HTI-based initialisation as compared
to both CC-based ones (Fig. 10c). Both the probability of converging
slowly or of diverging and the final residuals significantly worsen
with increasing disorientations as showed in Fig. 11b and Fig. 10c,
respectively. As the distribution of the disorientation within the
whole dataset suggests (black curve in Fig. 11b), there might be a
lack of statistics at the highest disorientations, which prevent a clear
correlation to be observed. Nevertheless, the number of iterations
increases with the disorientation angle for all the investigated strate-
gies in Fig. 11c, consistently with the average of the initial residuals
in Fig. 10b.

In order to identify the reasons for this increase and to better
assess the influence of the initial guess strategy on the initial resid-
uals, the angular deviation between the HTI-based or the CC-based
initial guesses with respect to a reference solution is investigated.
Since the true solution is unknown, the result of the DIC aided by the
complete CC-based IG is taken as a reference since it minimises the
final residuals. Disorientation is characterized either by the disorien-
tation angle and the disorientation axis or by the three rotations



Fig. 11. (a) Distribution of the number of iterations for each initial guess strategy,
where m and s denote the mean value and the standard deviation of the distributions,
respectively. (b) Distribution of the disorientation angles from HT within the whole
dataset (black curve) and probabilities of converging slowly (>200 iterations) or of
diverging (>1000 iterations) as a function of the disorientation angle when using the
HTI-based initialisation. (c) Mean number of iterations of the IC-GN algorithm as a
function of the disorientation angle for all the IG strategies.
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around the axes of the sample frame. The second representation is
used below and the angular deviations on the three rotation compo-
nents wi are computed pointwise over the whole dataset. The rota-
tion components and the disorientations according to the CC-based
initial guess alone are deduced from Eq. (10) considering the ‘com-
plete’ initialisation of the homography in Eq. (14). No difference
should be made between the ‘partial’ and the ‘complete’ initialisa-
tions. Indeed, they lead to a different warping of the initial target pat-
tern, but the disorientations deduced from the FMT-CC and FT-CC
analysis are the same.

The distributions of the angular deviations with respect to the SR
aided by the CC-based IG in Fig. 12a show that the lattice rotations
estimated by the HTI-based analysis are 4�5 times more scattered
than for the CC-based initial guess (1�1.2° and 0.2�0.3°, respec-
tively). Such a scattering in the rotation components involved in the
calculation of the GND densities is the cause of the very noisy GND
map in Figs. 7b and 8b. It is also consistent with the wider spread in
the distribution of the average of the initial absolute residuals when
using the HTI-based initialisation in Fig. 10b (red dotted curve), as
compared to both CC-based strategies (black and blue dotted curves).
Note that the angular deviation regarding the rotation around

!
X3

(Fig. 12a) has a standard deviation that is » 50% higher than for the
other axes (0.31° in comparison with» 0.2B). This is related to the
angular resolution of the FMT-CC, namely 0.35° here (180°/512 pix-
els), which is slightly improved by fitting the peak of the cross-corre-
lation function. If the resolution could be improved by using higher-
resolution EDP, its present performances remain nevertheless suffi-
cient to ensure a good convergence of the IC-GN algorithm as com-
pared to the HTI-based initialisation (Fig. 11).

Besides the scattering of the values, the evolution of the angular
deviation with the disorientation angles in Fig. 12b follows exactly
the same tendencies than the average of the initial residuals in
Fig. 10c, confirming the higher accuracy of the CC-based initial guess
on the lattice rotations. Interestingly, the HTI presents smaller angu-
lar deviations at small disorientations, where the uncertainty on the
disorientation axis is expected to be the highest [63]. It is observed
that the convergence issues occurring above 3�3.5° when using the
HTI-based initialisation (Fig. 11b) actually correspond to the disorien-
tation range for which angular deviations are greater than 1° in
Fig. 12b. On the one hand, this is in agreement with previous works
[32,33]. On the other hand, this confirms that the HTI cannot provide
a suitable initial guess in a systematic way, as already suggested in
section 2.3 before proposing the CC-based approach. Further investi-
gations also reveal that all diverging points when using the HTI-based
initialisation actually admit an angular deviation of more than 2° on
at least one of the estimated rotation component, which never hap-
pens with the CC-based initial guess.

Finally, it is worth noting that both the number of iterations and
the residuals (initial and final) increase with the disorientation angle
while the angular deviations of each initial guess strategy remains
relatively constant for disorientations higher than 5° in Fig. 12b.
Therefore, the increases observed in Figs. 11c and 10c cannot be
attributed to the initial guess alone. Indeed, the warped target subset
may partially disappear from the EDP or at least, it may contain an
increasing amount of near-edges regions with a lower signal-to-noise
ratio. The variation of the band contrast with the orientation can also
play a role, as raised in [25].

In brief, the CC-based IG ensures a higher computation efficiency
of the IC-GN algorithm as compared to a HTI-based initialisation, in
particular at high disorientations (>4°). Moreover, neglecting the
projective effects when conducting the FMT-CC + FT-CC measure-
ments and when warping the initial target subset appears to be a rea-
sonable assumption for the investigated range of disorientations, as
already suggested in Fig. 5. If the ‘complete’ initialisation should be
preferred for computational efficiency, the ‘partial’ one makes the
DIC analysis fully independent from the SEM calibration since even a
coarse knowledge of the SEM calibration is not required for the initial
guess.

6. Discussion

Borrowing techniques in the field of experimental mechanics, a
‘global’ DIC approach for rotation and elastic strain measurement
from EDP is proposed. Subpixel registration is performed by a state-
of-the-art IC-GN algorithm analysing EDP as a whole through a
unique and large ROI. The working principle is thus similar to recent
but independent works [32,34], which tends to reinforce our choices.
The implementation however differs. First, relative deformations of



Fig. 12. (a) Distribution of the angular deviations of the rotation components estimated by the CC-based IG and by the HT-based indexation (HTI), where m and s denote the mean
value and the standard deviation of each distribution, respectively. (b) Evolution of the angular deviation as a function of the disorientation angle. Deviations are measured with
respect to the DIC aided by the ‘complete’ CC-based IG (Fig. 7c), which minimizes at best the final residuals.
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the ROI are described by a first-order homography, independently
from the SEM calibration. Second, it accounts for optical distortions
without substantially impacting the numerical cost of the analysis.

As demonstrated in section 2.1, a linear homography enables to
recover the deviatoric deformation gradient tensor while offering the
possibility of an ‘uncoupled’ DIC approach. Yet, Ruggles et al. [33] jus-
tified the development of an ‘integrated’ DIC approach (i.e. where the
DIC and the SEM calibration are coupled) by stating that no linear (or
even quadratic) shape function is appropriate for HR-EBSD. Their rea-
soning is apparently linked to the consideration of Euclidian coordi-
nates. As shown here however, this is not a requirement and
homogeneous coordinates, often met in the field of computer vision
to deal with projective transformations, can be used.

If the development of an ‘uncoupled’ method is first historical, it
was maintained despite the emergence of several I-DIC approaches
[32,34] for the following reasons:

(i) Certainly, an ‘uncoupled’ approach implies additional steps (i.e. Eqs.
(8) and (10)) to deduce the deformation gradient tensor. However,
they do not introduce error apart from numerical approximations
inherent to floating point calculation, which are negligible when
compared to both DIC and calibration uncertainties.

(ii) The error made by the DIC is separated from the calibration uncer-
tainty. If calibration is modified, a dataset is re-analysable in a neg-
ligible time-lapse. Indeed, the analysis will directly start from
Eq. (8) where the deformation parameters hij are already known.

(iii) The numerical cost of the above mentioned additional steps is
largely compensated during the GN algorithm which is from our
point of view simpler to implement. There is no need to pre-pro-
cess the patterns in order to compensate the variations of the cal-
ibration parameters [34] or to account for them when computing
each warped coordinates [33]. Instead, the latter are computed
in a compact way in Eq. (7) and the deformation parameters are
corrected using Eq. (8) only once per EDP. Moreover, the loca-
tions ξ (or bj) remain also unchanged during the whole analysis,
saving the computation of the relative position of each points
with respect to the (displacing) pattern centre.

It must nevertheless be recognised that I-DIC is at some point par-
ticularly convenient. The deformation parameters are directly the
components of the deviatoric deformation gradient tensor, which
undoubtedly eases the initialisation of the GN algorithm, the under-
standing of its underlying equations or the interpretation of its
results. This is especially appreciable when considering potential
cross-grain analyses [35].

The performances are tested using the standard EBSD technique as
well as the newly developed on-axis TKD configuration for which a
global DIC approach is applied for the first time. This echoes the recent
works by Yu et al. [28] and Tang et al. [29], who first applied the ‘local’
HR-EBSD technique to “off-axis” and “on-axis” TKD, respectively.
Besides the investigated techniques, another originality of this work
also stems from the chosen materials, whose thermomechanical treat-
ments have caused significant plastic strains. Indeed, the HR-EBSD
technique mainly focusses on the measurement of elastic strains,
which is particularly relevant in purely elastically or slightly plastically
deformed materials. As an example, experimental applications of the
recent “global” HR-EBSD have only been carried out by Shi et al. [34]
to our knowledge. After validating their approach by bending a silicon
single crystal, the authors assessed the elastic strains in an austenitic
steel deformed at the onset of plasticity, with an impressive uncer-
tainty of »4:10�5 where slip is not activated.

Here, the investigated 15% strained IF steel sheet and the
quenched and tempered ODS steel thin foil are representative of
engineering problems, for which plastic strains are important as com-
pared to elastic strains (the latter are also negligible as compared to
elastic curvatures when estimating the Nye’s tensor). They are com-
monly analysed by means of the HT-based indexation although it
misses most of the dislocation structures, in particular at the low dis-
orientations, as illustrated in Fig. 7b and Fig. 8b. Despite it is not a
novelty, such markedly deformed and polycrystalline materials
remain underexplored by high-angular resolution techniques. Only a
few studies like the one by Jiang et al. [62] are available in the litera-
ture. A major reason is the drop of accuracy due to the deterioration
of the pattern quality, aggravated by high rotations. Accurate calibra-
tion which is still an active research area in of the HR-EBSD commu-
nity, is also affected as evidenced by Tanaka & Wilkinson [58], where
the accuracy of the proposed pattern matching analysis worsens in
deformed regions of the investigated IF steel specimen. Calibration
may be perfectible in the present work but requires scientific and
technical developments.

Despite all of this, the results suggest that the HR-EBSD technique
can be applied to a larger range of materials, complementary to recent
indexation techniques [13,16]. Relatively large regions are character-
ized in Figs. 7 and 8 using standard cameras mounted on a SEM tailored
for imaging which lacks stability. Comparison with experimental or
simulated FSD images indicates that the DIC faithfully highlights details
of the microstructure. In the examples shown here the elastic strains
may be questionable mainly because of insufficient calibration. As men-
tioned in section 3.2, ‘phantom’ strains are possibly present so the elas-
tic strains in ODS steel displayed in Fig. 13 are rather qualitative. As the
material contains nano-sized oxide precipitates near the surface, the
stress free surface assumption is not considered here. Only five elastic
strains components are consequently shown in Fig. 13a-e. They are
obtained by polar decomposition of the deviatoric deformation



Fig. 13. Elastic strain mapping in the ODS steel obtained by the ‘global’ DIC approach aided by the CC-based IG with complete initialisation of the homography.
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gradient tensor expressed in the sample frame. In the light of the close-
up in Fig. 13a’ of the elastic strain mapping of ɛ11, the method seems
very promising. Thanks to the 10 nm step size, features corresponding
to single dislocations according to the experimental FSD image are
clearly visible within the elastic strain field.

Several aspects of the proposed method can be improved. Analysis
speed can be enhanced as the IC-GN algorithm is parallelizable [64]
and possible optimisations are addressed in [54,55]. Besides, both IC-
GN and FA-GN algorithms are benefiting from tremendous develop-
ments like in a very recent work by Su et al. [65] where systematic
error is significantly reduced by applying random offsets to sampling
positions. Instead of using computationally demanding biquintic B-
splines (whose extra cost as compared to cubic ones is already ques-
tioned by Ruggles et al. [33]), lower order interpolation schemes
could be used without loss of accuracy. Robustness against noise or
pattern blurring can be enhanced by means of error functions [66].
As far as the initial guess is concerned, the FMT is currently approxi-
mated but an analytical computation is also possible as reviewed
[67]. More generally, the initial guess strategy can be optimised by
coupling the present path independent method with a reliability
guided and path dependant one. Indeed, the proposed CC-based ini-
tial guess can be only use when an initialisation of the homography
from the neighbouring points fails to ensure a satisfying convergence
of the IC-GN algorithm.

Finally, the convergence properties of the ‘global’ HR-EBSD tech-
nique should be clarified. The accuracy of the initial guess is known
to be determinant on the efficiency of the GN-algorithm [37,38],
which has been highlighted by using simulated patterns in [32,33].
Here, the use of an automated CC-based initial guess ensures an 80%
faster convergence of the IC-GN algorithm than when considering
the HTI-based indexation, for which divergence predominantly
occurs for larger disorientations. Since the GN-algorithm is a local
optimisation scheme, it is primordial to ensure that it converges
towards the correct solution. Besides the convergence radius, the
convergence criterion is another essential factor [38]. As investigated
by Pan et al. [56] for speckle patterns, the latter should neither be too
loose nor too stringent such that the optimum ratio between accu-
racy and computational efficiency is obtained.
7. Conclusions

� A first-order homography applied to a unique and large subset
allows electron diffraction patterns to be registered independently
from the SEM calibration. In this novel global HR-EBSD/HR-TKD
framework, the calibration is only considered afterwards to deduce
the lattice rotations and elastic strains from the DIC measurements.

� The crystallographic orientations obtained by the Hough-trans-
form based indexation are not precise enough to correctly initial-
ise the IC-GN algorithm. Large disorientations or discontinuities
can be resolved by the IC-GN algorithm with the help of a cross-
correlation based initial guess (FMT-CC + FFT-CC). The latter pre-
aligns pattern disoriented here up to 23° in an automated and
path-independent way. Moreover, the estimation of the lattice
rotations is sufficiently fine to ensure the IC-GN algorithm to con-
vergence efficiently, here up to 12°

� Despite the medium resolution of the electron diffraction pat-
terns and the thermomechanical states of the studied material
which deteriorates their quality, the proposed DIC analysis
appears sufficiently robust and sensitive to provide a fine
description of the grain internal disorientations and GND densi-
ties. This suggests that various engineering microstructures clas-
sically investigated by standard indexation techniques could
benefit from the present HR-EBSD/HR-TKD technique.
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Appendix A. Correction of the deformation parameters of the
homography

The effects of the variation of the projection geometry can be
modelled by the matrices T in Eq. (A.1) and S in Eq. (A.2), which
describe a uniform translation by a vector ðDPC

1 D
PC
2

ÞT and an
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isotropic scale by a factor a with respect to the pattern centre of the
reference pattern, respectively. Note that the translational part in Eq.
(A.2) reflects the fact the centre of the homography X0 does not nec-
essary coincide with the pattern centre. The corrected deformation
parameters bhij are deduced from the ones measured by the DIC (hij)
by multiplying (S.T)�1 by the homography in Eq. (5), which immedi-
ately leads to the relationships in Eq. (8).

T ¼
1 0 D

PC
1

0 1 D
PC
2

0 0 1

0B@
1CA ðA:1Þ

S ¼
a 0 x01:ða�1Þ
0 a x02:ða�1Þ
0 0 1

0@ 1A ðA:2Þ

Appendix B. Relationships between the homography and the
deviatoric deformation gradient

In the following, a two-component vector gives a position on the
scintillator in 2D Euclidian coordinates (EC) while a three-component
vector is a representation of such a 2D point in homogeneous coordi-
nates (HC). By definition, j ¼ X�X0 where X0 is the geometric centre
of the ROI, located at x01 x02ð ÞT with respect to the pattern centre
(of the reference). A possible representation of ξ in HC is
x1�x01 x2�x02 1ð ÞT . Starting from Eq. (3), it leads to

ξ 0
1

ξ 0
2

ξ 0
3

0B@
1CA¼

1þh11ð Þ:x1þh12:x2þh13� h11þ1ð Þ:x01�h12:x02
h21:x1þ 1þh22ð Þ:x2þh23�h21:x01� 1þh22ð Þ:x02

h31:x1þh32:x2þ1�h31:x01�h32:x02

0@ 1A: ðB:1Þ

By multiplying its right side by DD=ð1�h31:x01�h32:x02) according to
the ‘homogeneous property’ (Eq. (6)), Eq. (B.1) is rearranged as follows:

ξ 0
1

ξ 0
2

ξ 0
3

0B@
1CA¼

DD:
1þh11

1�h31:x01�h32:x02
:x1þ h12

1�h31:x01�h32:x02
:x2þh13� 1þh11ð Þ:x01�h12:x02

DD: 1�h31:x01�h32:x02ð Þ :DD
	 


DD:
h21

1�h31:x01�h32:x02
:x1þ 1þh22

1�h31:x01�h32:x02
:x2þh23�h21:x01� 1þh22ð Þ:x02

DD: 1�h31:x01�h32:x02ð Þ :DD
	 


DD:h31

1�h31:x01�h32:x02
:x1þ DD:h32

1�h31:x01�h32:x02
:x2þDD

0BBBBBBB@

1CCCCCCCA:

ðB:2Þ
The third homogenous component is assumed non-zero and all com-
ponents are consequently divided by the latter to get back to EC (i.e.
ξ 0
1 ¼ x01�x01 and ξ

0
2 ¼ x02�x02):

x01�x01
x02�x02

� �
¼

DD:

1þ h11

1�h31:x01�h32:x02
:x1 þ h12

1�h31:x01�h32:x02
:x2 þ h13� 1þ h11ð Þ:x01�h12:x02

DD: 1�h31:x01�h32:x02ð Þ :DD
	 


DD:h31

1�h31:x01�h32:x02
:x1 þ DD:h32

1�h31:x01�h32:x02
:x2 þ DD

DD:

h21

1�h31:x01�h32:x02
:x1 þ 1þ h22

1�h31:x01�h32:x02
:x2 þ h23�h21:x01�ð1þ h22Þ:x02

DD: 1�h31:x01�h32:x02ð Þ :DD
	 


DD:h31

1�h31:x01�h32:x02
:x1 þ DD:h32

1�h31:x01�h32:x02
:x2 þ DD

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ðB:3Þ

The deformed coordinates x0i are isolated by passing the offsets x01and
x02 on the right side which leads to:

x01
x02

� �
¼

DD:

1þ h11 þ h31:x01
1�h31:x01�h32:x02

:x1 þ h12 þ h32:x01
1�h31:x01�h32:x02

:x2 þ 1
DD

h13� 1þ h11ð Þ:x01�h12:x02
1�h31:x01�h32:x02

þ x01

� �
:DD

	 

DD:h31

1�h31:x01�h32:x02
:x1 þ DD:h32

1�h31:x01�h32:x02
:x2 þ DD

DD:

h21 þ h31:x02
1�h31:x01�h32:x02

:x1 þ 1þ h22 þ h32:x02
1�h31:x01�h32:x02

:x2 þ 1
DD

h23�h21:x01�ð1þ h22Þ:x02
1�h31:x01�h32:x02

þ x02

� �
:DD

	 

DD:h31

1�h31:x01�h32:x02
:x1 þ DD:h32

1�h31:x01�h32:x02
:x2 þ DD

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ðB:4Þ

Finally, a term-by-term comparison of Eq. (B.4) with the HR-EBSD
problem in Eq. (9) directly gives the relationships in Eq. (10).
Appendix C. Detail and illustration and of the working principle of
the initial guess

The translation of a reference ROI r
»
leading to the highest similar-

ity with a target ROI t
»
according to the CZNCC criterion is measured by

localizing the maximum of the normalised cross-correlation function
(XCF) with respect to its centre. According to the Fourier shift theo-
rem, such this spatial translation generates a phase shift between the
FT. Based on this, FT-CC is a numerically efficient FFT-based peak
finding algorithm which computes the normalised XCF as follows:

XCF ¼ =�1
= � r

»n o
:= t

»n o
����= � r

»� 
����:����= t
»n o����

8>><>>:
9>>=>>;; ðC:1Þ

where =, =* and =�1 denote the FT, its conjugate and its inverse,
respectively. FT-CC is however unsuitable for images rotated by more
than 6�8° or whose scale factor is not close to 1 [47]. If the second
case is never happening when working with EDP, harmful effects of
rotation have already been pointed out by Maurice et al. [25] and
Britton et al. [24] as they proposed the remapping technique. The
FMT uncouples the spatial effects of rotation and scaling from transla-
tion such that the latter results in phase shift between the FMT
[67�69]. Rotation and scale are consequently measured despite the
presence of translation by means of FMT-CC, i.e. using the FMT
instead of the FT in Eq. (C.1).

The on-axis TKD patterns from Fig. 5 are used to illustrate the
working principle of the method in the following. There is about
�18° in-plane rotation between these two 600 £ 600 px2 EDP (Fig.
C1a,a’). A Kikuchi band is highlighted in red to make it more readily
visible. In practise, a reduced ROI of 512 £ 512 px2 is considered in
order to allow a direct use of FFT algorithms and because the signal is
particularly noisy on edges. The latter is windowed with a cosine-
tapered function (Fig. C1b,b’) to prevent spectrum leakage while
computing the FT (Fig. C1c,c’). As the window w is applied to the sig-
nal s, the average intensity of the windowed signal bs is simulta-
neously brought to zero according to:

bs j
� � ¼ s j

� ��mean s:wð Þ
mean sð Þ

� �
:w j

� � ðC:2Þ

(i.e. r
»
and t

»
are replaced by br and bt in Eq. (C.1). As expected, a direct

FT-CC analysis fails to recover the translation because the XCF (Fig.
C1g) contains plenty of peaks of relatively similar intensity. FMT-CC
is thus conducted first.

In order to compute the FMT, a method proposed by Reddy & Chat-
terji [69] is adopted here because of its easy implementation. It consists
in a resampling of the log-amplitude of the FT in a polar or log-polar
frame and the FT is then computed in order to obtain the FMT. Actually,
a polar frame is sufficient since negligible scale changes are expected.
This makes rotation and scale visible in the form of vertical and horizon-
tal translations in Fig. C1d,d’, respectively. The resampled coordinates
are read from a pre-computed look-up table to avoid redundant calcula-
tions while interpolation is performed according to a 3-points bilinear
scheme [70] avoiding the “checkerboard” effect of conventional 4-points
bilinear interpolation. The FMT is then obtained by computing the FT
(Fig. C1e,e’) from which the XCF is deduced by FMT-CC (Fig. C1f). The in-
plane rotation angle u3 is deduced from its clear peak indicated by the
red shift, as detailed in [47,69]. In order to lower the calculation effort,
the scale factor is assumed equal to 1 such that the steps from Fig. C1d,e
and f are actually reduced to a 1-dimension signal although 2-dimen-
sional images are used here for illustration purpose. More precisely,
Fig. C1d,d’ can be replaced by a 1D-array containing the average value of
each row. Note that this approach is at some point similar with a recent
work by Foden et al. [71] where the authors perform a log-polar resam-
pling of the spatial images instead of the magnitude of their FT in order
to measure the in-plane rotation. This is because those images only differ



Fig. C1. Working principle of the in-plane rotation estimation by means of FMT-CC. (a) Reference pattern. Similarly, prime refers to the target image. (b) Windowed ROI. (c) FT of (b)
in Cartesian coordinates. (d) Resampling of the log-magnitude of (c) in a polar frame. (e) FT of (d) after replacing each row by its average value. (f) XCF obtained by FMT-CC. A clear
peak downwards the XCF centre indicates that in-plane rotation is present. The rotation angle u3 is deduced from the vertical red shift. (g) XCF obtained by direct FT-CC of the win-
dowed ROI. Since large in-plane rotation is present, no clear peak is observed within the XCF and in-plane translation cannot be reliably measured.

Fig. C2. Working principle of the determination of the remaining in-plane translation by means of FT-CC. (a) Windowed reference ROI used during FMT-CC. (b) Reference ROI
rotated by u3 and windowed. (b*) Same ROI than (b) but with an applied mask on the central spot. (b’) Windowed target ROI used during FMT-CC. (c) XCF obtained by FT-CC of (b)
and (b’). Translation fails to be recovered because of a parasite peak in the middle of the XC due to the transmitted beam. (c*) FT-CC of (b*) and (b’). The XCF has a clear peak and the
arrow corresponds to the remaining translation.
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by a rotation around their centre which must coincide with the pattern
centre. It is not necessary the case here. More generally, different ways
exist to compute a FMT [67] so that the polar resampling can be avoided.

The reference ROI is rotated around its centre X0 by u3 ¼�18B

(Fig. C2b,b*) while the target ROI remains unchanged (Fig. C2b’ is
the same than Fig. C1b’) and the remaining translation is measured
by FT-CC. This is however expected to fail in the case of on-axis
TKD because of the transmitted beam, i.e. the saturated central
spot. It works as an “anchor” by generating a parasite peak in the
middle of the XCF (Fig. C2c). The latter is consequently hidden by
applying a mask on the reference (Fig. C2b*). The so-obtained. XCF
(Fig. C2c*) has then a clearly identifiable peak from which the
remaining translation

!
D is deduced. Here, the latter is about

Dx1 ¼ 10 and Dx2 ¼�118 pixels along
!
X1 and

!
X2 , respectively. Note

that in practice, the XCF peak are fitted with a Gaussian similarly
to the ‘local’ HR-EBSD technique [21] in order to enhance the reso-
lution of the technique.

Appendix D. Implementation of the IC-GN algorithm

For the proposed parametrization of the homography, the Jaco-
bian is given as a function of p in Eq. (D.1). The convergence criterion
is defined according to Eq. (D.2) which is inspired from [55].

JW j; p
� �¼ 1

h31:ξ1þh32:ξ2þ1
ξ1 ξ2 1 0 0 0 �ξ1:ξ

0
1 �ξ2:ξ

0
1

0 0 0 ξ1 ξ2 1 �ξ1:ξ
0
2 �ξ2:ξ

0
2

� �
ðD:1ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

i¼1

X3
j¼1

Dhij:ξ jmax

� �2
þ Dh31: ξ1max

� �2þ Dh32:ξ2max

� �2vuut <0:001

where ξ jmax¼
max ξ1ð Þ if j¼1
max ξ2ð Þ if j¼2

1 if j¼3

8<:
ðD:2Þ

Appendix E. High-pass log filtering

Let I(x, y) � 0 be the grey intensity at location (x, y) within the pat-
tern. The high-pass log filter is applied according to Eq. (E.1). I

» ðx; yÞ is
the filtered intensity and N ¼ 2kþ 1 is the size of the kernel. Equation
corresponds to the general case. Image can be padded by repeating
borders in order to deal with edges.

I
»

x; yð Þ¼N2:log I x; yð Þþ1½ ��
Xk
i¼�k

Xk
j¼�k

log I xþi; yþjð Þþ1½ � ðE:1Þ

References

[1] B.L. Adams, S.I. Wright, K. Kunze, Orientation imaging: the emergence of a new
microscopy, Metall. Trans. A. 24 (1993) 819–831, doi: 10.1007/BF02656503.

[2] S.I. Wright, A review of automated orientation imaging microscopy (OIM), J. Com-
puter-Assisted Microscopy 5 (1993) 207–221.

[3] R.A. Schwarzer, Present state of electron backscatter diffraction and prospective
developments, in: D.P. Field, B.L. Adams, M. Kumar, A.J. Schwartz (Eds.), Electron
Backscatter Diffraction in Materials Science, 2nd ed.Springer US, 2009, pp. 1–20,
doi: 10.1007/978-1-4757-3205-4_1.

[4] D. Chen, J.-.C. Kuo, W.-.T. Wu, Effect of microscopic parameters on EBSD spatial
resolution, Ultramicroscopy. 111 (2011) 1488–1494, doi: 10.1016/j.ultra-
mic.2011.06.007.

[5] R.R. Keller, R.H. Geiss, Transmission EBSD from 10nm domains in a scanning
electron microscope, J. Microsc. 245 (2012) 245–251, doi: 10.1111/j.1365-
2818.2011.03566.x.

[6] G.C. Sneddon, P.W. Trimby, J.M. Cairney, Transmission Kikuchi diffraction in a
scanning electron microscope: a review, Mater. Sci. Eng. R Rep. 110 (2016) 1–12,
doi: 10.1016/j.mser.2016.10.001.

[7] J.-.J. Fundenberger, E. Bouzy, D. Goran, J. Guyon, A. Morawiec, H. Yuan, Transmis-
sion Kikuchi diffraction (TKD) via a horizontally positioned detector, Microsc.
Microanal. 21 (2015) 1101–1102, doi: 10.1017/S1431927615006297.
[8] J.J. Fundenberger, E. Bouzy, D. Goran, J. Guyon, H. Yuan, A. Morawiec, Orientation
mapping by transmission-SEM with an on-axis detector, Ultramicroscopy 161
(2016) 17–22, doi: 10.1016/j.ultramic.2015.11.002.

[9] H. Yuan, E. Brodu, C. Chen, E. Bouzy, J.-.J. Fundenberger, L.S. Toth, On-axis versus
off-axis transmission Kikuchi diffraction technique: application to the characteri-
sation of severe plastic deformation-induced ultrafine-grained microstructures, J.
Microsc. 267 (2017) 70–80, doi: 10.1111/jmi.12548.

[10] F. Niessen, A. Burrows, A.B.da S. Fanta, A systematic comparison of on-axis and
off-axis transmission Kikuchi diffraction, Ultramicroscopy. 186 (2018) 158–170,
doi: 10.1016/j.ultramic.2017.12.017.

[11] N.C. Krieger Lassen, K. Conradsen, D. Juul Jensen, Image processing procedures for
analysis of electron diffraction patterns, Scanning Microsc. 6 (1992) 115–121.

[12] F. Ram, S. Wright, S. Singh, M.D. Graef, Error analysis of the crystal orientations
obtained by the dictionary approach to EBSD indexing, Ultramicroscopy. 181
(2017) 17–26, doi: 10.1016/j.ultramic.2017.04.016.

[13] Y.-.H. Chen, S.U. Park, D. Wei, G. Newstadt, M. Jackson, J.P. Simmons, M. De Graef,
A.O. Hero, A dictionary approach to EBSD indexing, Phys. Stat. (2015) http://
arxiv.org/abs/1502.07436 (accessed March 5, 2019).

[14] S. Singh, Y. Guo, B. Winiarski, T.L. Burnett, P.J. Withers, M.D. Graef, High resolution
low kV EBSD of heavily deformed and nanocrystalline aluminium by dictionary-
based indexing, Sci. Rep. 8 (2018) 1–8, doi: 10.1038/s41598-018-29315-8.

[15] R. Hielscher, F. Bartel, T.B. Britton, Gazing at crystal balls - Electron backscatter
diffraction indexing and cross correlation on a sphere, Cond-Mat. (2018) http://
arxiv.org/abs/1810.03211 (accessed May 6, 2019).

[16] W.C. Lenthe, S. Singh, M.D. Graef, A spherical harmonic transform approach to the
indexing of electron back-scattered diffraction patterns, Ultramicroscopy. 207
(2019) 112841, doi: 10.1016/j.ultramic.2019.112841.

[17] K.Z. Troost, P. van der Sluis, D.J. Gravesteijn, Microscale elastic-strain determina-
tion by backscatter kikuchi diffraction in the scanning electron microscope, Appl.
Phys. Lett. 62 (1993) 1110–1112, doi: 10.1063/1.108758.

[18] A.J. Wilkinson, Measurement of elastic strains and small lattice rotations using
electron back scatter diffraction, Ultramicroscopy. 62 (1996) 237–247, doi:
10.1016/0304-3991(95)00152-2.

[19] A. Wilkinson, A new method for determining small misorientations from EBSD
patterns, Scr. Mater. 44 (2001) 2379–2385.

[20] A.J. Wilkinson, G. Meaden, D.J. Dingley, High resolution mapping of strains and
rotations using electron backscatter diffraction, Mater. Sci. Technol. 22 (2006)
1271–1278, doi: 10.1179/174328406X130966.

[21] A.J. Wilkinson, G. Meaden, D.J. Dingley, High-resolution elastic strain measure-
ment from electron backscatter diffraction patterns: new levels of sensitivity,
Ultramicroscopy. 106 (2006) 307–313, doi: 10.1016/j.ultramic.2005.10.001.

[22] T.B. Britton, C. Maurice, R. Fortunier, J.H. Driver, A.P. Day, G. Meaden, D.J. Dingley,
K. Mingard, A.J. Wilkinson, Factors affecting the accuracy of high resolution elec-
tron backscatter diffraction when using simulated patterns, Ultramicroscopy. 110
(2010) 1443–1453, doi: 10.1016/j.ultramic.2010.08.001.

[23] T.B. Britton, A.J. Wilkinson, Measurement of residual elastic strain and lattice rota-
tions with high resolution electron backscatter diffraction, Ultramicroscopy. 111
(2011) 1395–1404, doi: 10.1016/j.ultramic.2011.05.007.

[24] T.B. Britton, A.J. Wilkinson, High resolution electron backscatter diffraction meas-
urements of elastic strain variations in the presence of larger lattice rotations,
Ultramicroscopy. 114 (2012) 82–95, doi: 10.1016/j.ultramic.2012.01.004.

[25] C. Maurice, J.H. Driver, R. Fortunier, On solving the orientation gradient depen-
dency of high angular resolution EBSD, Ultramicroscopy. 113 (2012) 171–181,
doi: 10.1016/j.ultramic.2011.10.013.

[26] A.J. Wilkinson, Assessment of lattice strain, rotation and dislocation content using
electron back-scatter diffraction, J. Phys. Conf. Ser. 326 (2011) 012004.

[27] S. Villert, C. Maurice, C. Wyon, R. Fortunier, Accuracy assessment of elastic strain
measurement by EBSD, J. Microsc. 233 (2009) 290–301, doi: 10.1111/j.1365-
2818.2009.03120.x.

[28] H. Yu, J. Liu, P. Karamched, A.J. Wilkinson, F. Hofmann, Mapping the full lattice strain
tensor of a single dislocation by high angular resolution transmission Kikuchi diffrac-
tion (HR-TKD), Scr. Mater. 164 (2019) 36–41, doi: 10.1016/j.scriptamat.2018.12.039.

[29] Y.T. Tang, P. Karamched, J. Liu, J.C. Haley, R.C. Reed, A.J. Wilkinson, Grain boundary
serration in nickel alloy inconel 600: quantification and mechanisms, Acta Mater.
181 (2019) 352–366, doi: 10.1016/j.actamat.2019.09.037.

[30] E. Brodu, E. Bouzy, J.-.J. Fundenberger, Diffraction contrast dependence on sample
thickness and incident energy in on-axis transmission Kikuchi diffraction in SEM,
Ultramicroscopy. 181 (2017) 123–133, doi: 10.1016/j.ultramic.2017.04.017.

[31] T.J. Hardin, T.J. Ruggles, D.P. Koch, S.R. Niezgoda, D.T. Fullwood, E.R. Homer, Anal-
ysis of traction-free assumption in high-resolution EBSD measurements, J.
Microsc. 260 (2015) 73–85, doi: 10.1111/jmi.12268.

[32] T. Vermeij, J.P.M. Hoefnagels, A consistent full-field integrated DIC framework for HR-
EBSD, Ultramicroscopy. 191 (2018) 44–50, doi: 10.1016/j.ultramic.2018.05.001.

[33] T.J. Ruggles, G.F. Bomarito, R.L. Qiu, J.D. Hochhalter, New levels of high angular
resolution EBSD performance via inverse compositional Gauss�newton based
digital image correlation, Ultramicroscopy. 195 (2018) 85–92, doi: 10.1016/j.
ultramic.2018.08.020.

[34] Q. Shi, S. Roux, F. Latourte, F. Hild, Estimation of elastic strain by integrated image
correlation on electron diffraction patterns, Ultramicroscopy. 199 (2019) 16–33,
doi: 10.1016/j.ultramic.2019.02.001.

[35] T. Vermeij, M. De Graef, J. Hoefnagels, Demonstrating the potential of accurate abso-
lute cross-grain stress and orientation correlation using electron backscatter diffrac-
tion, Scr. Mater. 162 (2019) 266–271, doi: 10.1016/j.scriptamat.2018.11.030.

[36] C. Zhu, K. Kaufmann, K.S. Vecchio, Novel remapping approach for HR-EBSD based
on demons registration, Ultramicroscopy. 208 (2020) 112851, doi: 10.1016/j.
ultramic.2019.112851.

http://dx.doi.org/10.1007/BF02656503
http://refhub.elsevier.com/S1359-6454(20)30213-5/othref0001
http://refhub.elsevier.com/S1359-6454(20)30213-5/othref0001
http://dx.doi.org/10.1007/978-1-4757-3205-4_1
http://dx.doi.org/10.1016/j.ultramic.2011.06.007
http://dx.doi.org/10.1016/j.ultramic.2011.06.007
http://dx.doi.org/10.1111/j.1365-2818.2011.03566.x
http://dx.doi.org/10.1111/j.1365-2818.2011.03566.x
http://dx.doi.org/10.1016/j.mser.2016.10.001
http://dx.doi.org/10.1017/S1431927615006297
http://dx.doi.org/10.1016/j.ultramic.2015.11.002
http://dx.doi.org/10.1111/jmi.12548
http://dx.doi.org/10.1016/j.ultramic.2017.12.017
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0010
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0010
http://dx.doi.org/10.1016/j.ultramic.2017.04.016
http://arxiv.org/abs/1502.07436
http://arxiv.org/abs/1502.07436
http://dx.doi.org/10.1038/s41598-018-29315-8
http://arxiv.org/abs/1810.03211
http://arxiv.org/abs/1810.03211
http://dx.doi.org/10.1016/j.ultramic.2019.112841
http://dx.doi.org/10.1063/1.108758
http://dx.doi.org/10.1016/0304-3991(95)00152-2
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0018
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0018
http://dx.doi.org/10.1179/174328406X130966
http://dx.doi.org/10.1016/j.ultramic.2005.10.001
http://dx.doi.org/10.1016/j.ultramic.2010.08.001
http://dx.doi.org/10.1016/j.ultramic.2011.05.007
http://dx.doi.org/10.1016/j.ultramic.2012.01.004
http://dx.doi.org/10.1016/j.ultramic.2011.10.013
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0025
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0025
http://dx.doi.org/10.1111/j.1365-2818.2009.03120.x
http://dx.doi.org/10.1111/j.1365-2818.2009.03120.x
http://dx.doi.org/10.1016/j.scriptamat.2018.12.039
http://dx.doi.org/10.1016/j.actamat.2019.09.037
http://dx.doi.org/10.1016/j.ultramic.2017.04.017
http://dx.doi.org/10.1111/jmi.12268
http://dx.doi.org/10.1016/j.ultramic.2018.05.001
http://dx.doi.org/10.1016/j.ultramic.2018.08.020
http://dx.doi.org/10.1016/j.ultramic.2018.08.020
http://dx.doi.org/10.1016/j.ultramic.2019.02.001
http://dx.doi.org/10.1016/j.scriptamat.2018.11.030
http://dx.doi.org/10.1016/j.ultramic.2019.112851
http://dx.doi.org/10.1016/j.ultramic.2019.112851


148 C. Ernould et al. / Acta Materialia 191 (2020) 131�148
[37] B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for
in-plane displacement and strain measurement: a review, Meas. Sci. Technol. 20
(2009) 062001, doi: 10.1088/0957-0233/20/6/062001.

[38] B. Pan, Digital image correlation for surface deformation measurement: historical
developments, recent advances and future goals, Meas. Sci. Technol. 29 (2018)
082001, doi: 10.1088/1361-6501/aac55b.

[39] B. Pan, Y. Wang, L. Tian, Automated initial guess in digital image correlation aided
by Fourier�Mellin transform, Opt. Eng. 56 (2017) 0141031 1�7https://doi.org/,
doi: 10.1117/1.OE.56.1.014103.

[40] B. Zitov�a, J. Flusser, Image registration methods: a survey, Image Vis. Comput. 21
(2003) 977–1000, doi: 10.1016/S0262-8856(03)00137-9.

[41] B. Pan, H. Xie, Z. Wang, Equivalence of digital image correlation criteria for pat-
tern matching, Appl. Opt. 49 (2010) 5501–5509, doi: 10.1364/AO.49.005501.

[42] R. Hartley, A. Zisserman, Projective geometry and transformations of 2D, Mult.
View Geom. Comput. Vis. (2004), doi: 10.1017/CBO9780511811685.005.

[43] S. Baker, I. Matthews, Lucas-Kanade 20 years on: a unifying framework, Int. J.
Comput. Vis. 56 (2004) 221–255, doi: 10.1023/B:VISI.0000011205.11775.fd.

[44] B.D. Lucas, T. Kanade, An iterative image registration technique with an applica-
tion to stereo vision, in: Proceedings of the Seventh International Joint Confer-
ence on Artificial Intelligence IJCAI, 1981, pp. 674–679.

[45] K. Mingard, A. Day, C. Maurice, P. Quested, Towards high accuracy calibration of
electron backscatter diffraction systems, Ultramicroscopy. 111 (2011) 320–329,
doi: 10.1016/j.ultramic.2011.01.012.

[46] B. Pan, Reliability-guided digital image correlation for image deformation mea-
surement, Appl. Opt. 48 (2009) 1535–1542, doi: 10.1364/AO.48.001535.

[47] B. Pan, Y. Wang, L. Tian, Automated initial guess in digital image correlation aided
by Fourier�Mellin transform, Opt. Eng. 56 (2017) 0141031 1�7https://doi.org/,
doi: 10.1117/1.OE.56.1.014103.

[48] E. Brodu, E. Bouzy, J.-.J. Fundenberger, J. Guyon, A. Guitton, Y. Zhang, On-axis tkd
for orientation mapping of nanocrystalline materials in SEM, Mater. Charact. 130
(2017) 92–96, doi: 10.1016/j.matchar.2017.05.036.

[49] T.B. Britton, D. Goran, V.S. Tong, Space rocks and optimising scanning electron
channelling contrast, Mater. Charact. 142 (2018) 422–431, doi: 10.1016/j.
matchar.2018.06.001.

[50] T. Ickler, H. Meckbach, F. Zeismann, A. Br€uckner-Foit, Assessing the influence of
crystallographic orientation, stress and local deformation on magnetic domains
using electron backscatter diffraction and forescatter electron imaging, Ultrami-
croscopy. 198 (2019) 33–42, doi: 10.1016/j.ultramic.2018.12.012.

[51] N.C. Krieger Lassen, J.B. Bildesorensen, Calibration of an electron back-scattering
pattern set-up, J. Microsc. 170 (1993) 125–129.

[52] T. Tanaka, A.J. Wilkinson, Pattern matching analysis of electron backscatter dif-
fraction patterns for pattern centre, crystal orientation and absolute elastic strain
determination � accuracy and precision assessment, Ultramicroscopy. 202
(2019) 87–99, doi: 10.1016/j.ultramic.2019.04.006.

[53] B. Beausir, J.-.J. Fundengerger, Analysis tools for electron and X-ray diffraction,
atex - software, universit�e de lorraine, Metz (2017) www.atex-software.eu .

[54] J. Blaber, B. Adair, A. Antoniou, Ncorr: open-Source 2D digital image correla-
tion matlab software, Exp. Mech. 55 (2015) 1105–1122, doi: 10.1007/s11340-
015-0009-1.
[55] B. Pan, K. Li, W. Tong, Fast, robust and accurate digital image correlation calcula-
tion without redundant computations, Exp. Mech. 53 (2013) 1277–1289, doi:
10.1007/s11340-013-9717-6.

[56] B. Pan, An evaluation of convergence criteria for digital image correlation using
inverse compositional Gauss�Newton algorithm, Strain 50 (2014) 48–56, doi:
10.1111/str.12066.

[57] N.C. Admal, G. Po, J. Marian, A unified framework for polycrystal plasticity with grain
boundary evolution, Int. J. Plast. 106 (2018) 1–30, doi: 10.1016/j.ijplas.2018.01.014.

[58] S. Sun, B.L. Adams, W.E. King, Observations of lattice curvature near the interface
of a deformed aluminium bicrystal, Philos. Mag. A. 80 (2000) 9–25, doi: 10.1080/
01418610008212038.

[59] B.S. El-Dasher, B.L. Adams, A.D. Rollett, Viewpoint: experimental recovery of geo-
metrically necessary dislocation density in polycrystals, Scr. Mater. 48 (2003)
141–145, doi: 10.1016/S1359-6462(02)00340-8.

[60] W. Pantleon, Resolving the geometrically necessary dislocation content by con-
ventional electron backscattering diffraction, Scr. Mater. 58 (2008) 994–997, doi:
10.1016/j.scriptamat.2008.01.050.

[61] A.J. Wilkinson, D. Randman, Determination of elastic strain fields and geomet-
rically necessary dislocation distributions near nanoindents using electron
back scatter diffraction, Philos. Mag. 90 (2010) 1159–1177, doi: 10.1080/
14786430903304145.

[62] J. Jiang, T.B. Britton, A.J. Wilkinson, The orientation and strain dependence of dis-
location structure evolution in monotonically deformed polycrystalline copper,
Int. J. Plast. 69 (2015) 102–117, doi: 10.1016/j.ijplas.2015.02.005.

[63] Prior, Problems in determining the misorientation axes, for small angular misorienta-
tions, using electron backscatter diffraction in the sem, J. Microsc. 195 (1999) 217–225.

[64] L. Zhang, T. Wang, Z. Jiang, Q. Kemao, Y. Liu, Z. Liu, L. Tang, S. Dong, High accuracy
digital image correlation powered by GPU-based parallel computing, Opt. Lasers
Eng. 69 (2015) 7–12, doi: 10.1016/j.optlaseng.2015.01.012.

[65] Y. Su, Q. Zhang, Z. Fang, Y. Wang, Y. Liu, S. Wu, Elimination of systematic error in
digital image correlation caused by intensity interpolation by introducing posi-
tion randomness to subset points, Opt. Lasers Eng. 114 (2019) 60–75, doi:
10.1016/j.optlaseng.2018.10.012.

[66] J. S�anchez, The inverse compositional algorithm for parametric registration,
Image Process. Line. 6 (2016) 212–232, doi: 10.5201/ipol.2016.153.

[67] S. Derrode, F. Ghorbel, Robust and efficient fourier�mellin transform approxima-
tions for gray-level image reconstruction and complete invariant description,
Comput. Vis. Image Underst. 83 (2001) 57–78, doi: 10.1006/cviu.2001.0922.

[68] Q.-.S. Chen, M. Defrise, F. Deconinck, Symmetric phase-only matched filtering of
Fourier�Mellin transforms for image registration and recognition, IEEE Trans.
Pattern Anal. Mach. Intell. 16 (1994) 1156–1168, doi: 10.1109/34.387491.

[69] B.S. Reddy, B.N. Chatterji, An FFT-based technique for translation, rotation, and
scale-invariant image registration, IEEE Trans. Image Process. Publ. IEEE Signal
Process. Soc. 5 (1996) 1266–1271, doi: 10.1109/83.506761.

[70] P.R. Smith, Bilinear interpolation of digital images, Ultramicroscopy. 6 (1981)
201–204, doi: 10.1016/S0304-3991(81)80199-4.

[71] A. Foden, D.M. Collins, A.J. Wilkinson, T.B. Britton, Indexing electron backscatter
diffraction patterns with a refined template matching approach, Ultramicroscopy.
207 (2019) 112845, doi: 10.1016/j.ultramic.2019.112845.

http://dx.doi.org/10.1088/0957-0233/20/6/062001
http://dx.doi.org/10.1088/1361-6501/aac55b
http://dx.doi.org/10.1117/1.OE.56.1.014103
http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1364/AO.49.005501
http://dx.doi.org/10.1017/CBO9780511811685.005
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0043
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0043
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0043
http://dx.doi.org/10.1016/j.ultramic.2011.01.012
http://dx.doi.org/10.1364/AO.48.001535
http://dx.doi.org/10.1117/1.OE.56.1.014103
http://dx.doi.org/10.1016/j.matchar.2017.05.036
http://dx.doi.org/10.1016/j.matchar.2018.06.001
http://dx.doi.org/10.1016/j.matchar.2018.06.001
http://dx.doi.org/10.1016/j.ultramic.2018.12.012
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0050
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0050
http://dx.doi.org/10.1016/j.ultramic.2019.04.006
http://www.atex-software.eu
http://dx.doi.org/10.1007/s11340-015-0009-1
http://dx.doi.org/10.1007/s11340-015-0009-1
http://dx.doi.org/10.1007/s11340-013-9717-6
http://dx.doi.org/10.1111/str.12066
http://dx.doi.org/10.1016/j.ijplas.2018.01.014
http://dx.doi.org/10.1080/01418610008212038
http://dx.doi.org/10.1080/01418610008212038
http://dx.doi.org/10.1016/S1359-6462(02)00340-8
http://dx.doi.org/10.1016/j.scriptamat.2008.01.050
http://dx.doi.org/10.1080/14786430903304145
http://dx.doi.org/10.1080/14786430903304145
http://dx.doi.org/10.1016/j.ijplas.2015.02.005
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0062
http://refhub.elsevier.com/S1359-6454(20)30213-5/sbref0062
http://dx.doi.org/10.1016/j.optlaseng.2015.01.012
http://dx.doi.org/10.1016/j.optlaseng.2018.10.012
http://dx.doi.org/10.5201/ipol.2016.153
http://dx.doi.org/10.1006/cviu.2001.0922
http://dx.doi.org/10.1109/34.387491
http://dx.doi.org/10.1109/83.506761
http://dx.doi.org/10.1016/S0304-3991(81)80199-4
http://dx.doi.org/10.1016/j.ultramic.2019.112845

	Global DIC approach guided by a cross-correlation based initial guess for HR-EBSD and on-axis HR-TKD
	1. Introduction
	2. Global DIC approach
	2.1. `uncoupled´ DIC based on a homography
	2.2. Correction of the optical distortion
	2.3. A fully automated and cross-correlation based initial guess

	3. Materials and methods
	3.1. Specimens and data acquisition
	3.2. SEM calibration
	3.3. Data processing

	4. Applications
	4.1. EBSD: IF steel
	4.2. On-axis TKD: ODS steel

	5. Quantitative analysis and influence of the initial guess
	6. Discussion
	7. Conclusions
	Acknowledgments
	Appendix A. Correction of the deformation parameters of the homography
	Appendix B. Relationships between the homography and the deviatoric deformation gradient
	Appendix C. Detail and illustration and of the working principle of the initial guess
	Appendix D. Implementation of the IC-GN algorithm
	Appendix E. High-pass log filtering
	References


