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A B S T R A C T   

Optical distortions caused by camera lenses affect the accuracy of the elastic strains and lattice rotations 
measured by high-angular resolution techniques. This article introduces an integrated correction of optical 
distortions for global HR-EBSD/HR-TKD approaches. The digital image correlation analysis is directly applied to 
optically distorted patterns, avoiding the pattern pre-processing step conducted so far while preserving the 
numerical efficiency of the Gauss-Newton algorithm. The correction implementation is first described and its 
numerical cost is assessed considering a homography-based HR-EBSD approach. The correction principle is 
validated numerically for various levels of first-order radial distortion over a wide range of disorientation angles 
(0 to 14◦) and elastic strain (0 to 5×10− 2). The errors induced when neglecting such distortions as well as the 
influence of both the radial distortion coefficient and the pattern centre and optical centre locations are quan-
tified. Even when both reference and target patterns are distorted, the correction appears necessary whatever the 
disorientation between those patterns. The required accuracy on the true distortion parameters for an effective 
correction is consequently determined.   

1. Introduction 

The well-established electron backscatter diffraction (EBSD) tech-
nique [1] and the emerging off-axis [2] and on-axis [3] transmission 
Kikuchi diffraction (TKD) techniques are dedicated to the microstruc-
tural characterisation of crystalline materials in the scanning electron 
microscope (SEM). Over the last 25 years, crystallographic orientations 
have been commonly determined using Hough-transform based index-
ing (HTI) [4] whose angular resolution is typically 0.5–1◦ and down to 
0.2◦ [5]. During the last years, the dictionary [6], the spherical har-
monic [7,8], and the pattern matching [9–11] approaches have 
emerged. All using simulated patterns, these orientation determination 
methods show a higher noise robustness than the HTI, but can also 
address pseudo symmetries [9]. Using refinement algorithms, they also 
achieve an angular resolution of up to 0.2◦ for a well-calibrated system 
[12,13]. 

Uncertainties on crystallographic orientations directly affect the 
accuracy of the disorientation angle and axis [14,15], and so the 
sensitivity on the geometrically necessary dislocation (GND) density. As 
highlighted in [16], a standard HTI may miss most of the dislocation 

structures at disorientations below ∼2◦. The angular resolution of 
indexing techniques is thus the limiting factor for the fine characteri-
sation of the deformation structures. To override this limitation, the 
high-angular resolution EBSD (HR-EBSD) technique was developed in 
parallel. Since the first attempts by Troost et al. [17] and Wilkinson [18, 
19], the technique experienced tremendous developments from 2006 
under the impetus of Wilkinson et al. [20]. The principle is to capture the 
displacements visible on the scintillator under the effect of a trans-
formation and to determine the latter knowing the projection geometry 
and its variations during a beam scan. Using this technique, elastic 
strains and lattice rotations are determined with an average error on the 
strain tensor of ∼1×10− 4 (0.006◦) in a SiGe/Si semiconductor structure 
or a single crystal of silicon subjected to four-point bending [21]. 

The displacements are measured using digital image correction (DIC) 
techniques. The original method [20] is based on local measurements. 
At least four non-collinear subsets are picked up across two 
high-resolution electron diffraction patterns, one reference pattern, and 
one target pattern. In practice, typically 20–100 subsets of 256× 256 
pixels are extracted from patterns of 1000×1000 pixels. Pairs of subsets 
are then cross-correlated to measure their relative shift with subpixel 
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accuracy by fitting the near-peak-region of the cross-correlation func-
tion with a Gaussian. The technique is, however, insensitive to hydro-
static dilatation of the lattice so the deviatoric elastic deformation 
gradient tensor F̂e associated with the measured displacement field is 
obtained by solving iteratively an overdetermined and weighted system 
of equations [20–22]. The actual elastic deformation gradient Fe is 
deduced by assuming a plane-stress condition [23,24]. As proven by 
Hardin et al. [25], the stress normal to the free surface remains negli-
gible in the absence of stress field sources located near the latter or of a 
significant error on the specimen tilt angle. In this form, a loss of ac-
curacy is nevertheless observed with increasing disorientation. The shift 
measurement by cross-correlation is indeed not suitable for images 
rotated by more than ∼ 7◦ [26]. Maurice et al. [27] and Britton et al. 
[24] consequently proposed the remapping technique, which consists in 
warping the reference pattern according to the obtained solution and 
then repeating the analysis until F̂e converges. In order to avoid iterative 
remapping, Zhu et al. [28] very recently proposed a one pass remapping 
based on demons registration. 

Benefiting from recent progress in the field of experimental me-
chanics [29], ‘global’ HR-EBSD techniques were proposed during the 
last two years [16,30–32]. They all rely on a single and large subset for 
which the relative deformations are accounted. Their measurement is 
performed iteratively in the spatial domain by means of a 
forward-additive (FA) [30,32] or an inverse-compositional (IC) [16,31] 
Gauss-Newton (GN) algorithm. It solves the non-linear DIC problem, i.e. 
the minimisation of the quadratic difference of intensities between the 
reference subset and the warped target subset. Note that both algorithms 
have the same convergence rate and accuracy, but the numerical effi-
ciency of the IC-GN algorithm is better [43]. As highlighted by Ruggles 
et al. [31] and Shi et al. [32], ‘global’ HR-EBSD approaches are 
competitive as compared to the ‘local’ one. An average error of the order 
of 10− 5 is notably achieved by Vermeij & Hoefnagels [30] using simu-
lated patterns. In these three works, the relative deformations of the 
subset are accounted by eight degrees of freedom which are neither 
more nor less than the components of the deviatoric deformation 
gradient F̂e (F̂e

33 being 1). These approaches are consequently referred to 
as integrated-DIC (I-DIC). This is not the case of the fourth approach 
proposed by Ernould et al. [16], in which a first-order homography is 
assumed. Such a shape function is often met in photogrammetry to 
describe projective transformations. It preserves lines, but not angles, i. 
e. a square is warped into an uncrossed quadrilateral. The GN-algorithm 
is performed independently of the projection geometry and its varia-
tions, which are only required afterwards to analytically deduce F̂e from 
the measured homography. 

Apart from DIC algorithms, numerous factors affect the perfor-
mances of both the ‘local’ and the ‘global’ HR-EBSD techniques. First 
and foremost, the input signal depends on the thermo-mechanical state 
of the material (pattern blurring due to plastic strain), the pattern 
overlapping [33], the camera performances (resolution/binning, sensi-
tivity, and bit depth [34–36]), and the pattern pre-processing (filtering 
the noise and the continuous background [10] or correcting the optical 
aberrations [36–38]). Another source of error stems from the uncer-
tainty on the projection geometry, which is ∼0.5% of the image width 
for conventional calibration techniques [39]. Errors of ∼3–5×10− 3 on 
the elastic strain or lattice rotation components are generated by the 
latter, but more specifically by the variations of the projection geometry 
across the orientation map [21,37]. Although the accurate determina-
tion of the projection geometry is part of a major research effort [10,37, 
40–46], the uncertainty inherent to the projection geometry still re-
mains an obstacle to the use of a simulated reference pattern for absolute 
elastic strain measurements [38,41,47,48], for which the projection 
geometry should be known with accuracy better than ∼0.05% of the 
image width [21,38,47]. To overcome this issue, Vermeij et al. [49] 
recently co-correlated strained patterns to resolve absolute elastic 

strains (i.e. without the need of a strain-free reference). If they demon-
strated the potential of such an analysis using (single energy) simulated 
patterns, experimental validation is required, as stated by the authors. 

Due to all these factors, HR-EBSD/HR-TKD techniques are commonly 
validated using simulated patterns [24,28,30,31,38,49]. More specif-
ically, simulated patterns were used by Britton et al. [38] to assess the 
error generated by the optical distortions induced by camera lenses. The 
latter affect the shape of the image and thus interfere with the 
displacement field associated with the elastic strains and lattice rota-
tions. According to the historical Brown-Conrady model [50–52], opti-
cal distortions are mostly divided into radial and tangential 
contributions, whose effects are illustrated in Fig. 1. Radial distortion 
stems from the spherical shape of the lens causing disparate light 
refraction between the centre and the edges. It bends straight lines into 
circular arcs, depicting either a “barrel” like (Fig. 1b) or a “pincushion” 
like (Fig. 1c) shape. Those distortions are mostly correlated to the focal 
length, barrel and pincushion being usually associated with small and 
long focal length systems, respectively [53]. The tangential distortion 
(Fig. 1d) stems from the “decentring” [51,52] due to positioning faults, i. 
e. the misalignment and the non-orthogonality of the optical axes of the 
lens components, relatively to each other, but also the sensor. In prac-
tice, its contribution is often marginal as compared to the radial one [54, 
55]. Although they are often described mathematically in an indepen-
dent manner, both radial and tangential distortions are nevertheless 
physically related [56]. 

Considering simple barrel distortions of 10− 8 to 10− 7, Britton et al. 
[38] pointed out that phantom strains of the order of 10− 3 are induced 
when an unstrained and undistorted pattern is cross-correlated with its 
optically distorted version. In this case, careful consideration of optical 
distortions is essential for any accurate HR-EBSD/HR-TKD measurement 
[37,38]. However, the authors [38] concluded that such a correction is 
second order when the reference and target patterns are both subjected 
to the same optical distortions, especially at low disorientation angles. 
Optical distortions are also detrimental to the calibration accuracy as 
recently discussed by Tanaka & Wilkinson [40]. 

So far, electron diffraction patterns are pre-processed to straighten 
them before carrying out the DIC analysis. Here, this step is avoided by 
integrating a correction of the optical distortions directly in the GN- 
algorithm. The feasibility of such a correction was first mentioned by 
Vermeij & Hoefnagels [30]. Implemented here in the homography-based 
approach [16], the proposed correction is easily transferable to I-DIC 
‘global’ HR-EBSD approaches [30–32]. In Section 2, the working prin-
ciple and the implementation of such a correction are exposed. Its 
limited computational cost is also assessed in terms of extra execution 
time. In Section 3, various distortion levels representative of EBSD 
cameras [37] are considered while the correction is validated from a 
large set of test patterns with disorientation up to 14◦ and an equivalent 
elastic strain ranging from 0 to 5×10− 2. In Section 4, the error in elastic 
strains and rotations induced by the optical aberrations is investigated, 
first as if the latter were not accounted for and then as if the correction 
was not exact. More specifically, the level of precision required on the 
position of the optical axis and the distortion coefficient is evaluated in 
the case of a first-order radial distortion, whose effect is known to be the 
most prevalent [53,57]. 

2. Theoretical and mathematical backgrounds 

This section first recalls the constitutive equations of the HR-EBSD 
technique and briefly introduces the mathematical background of the 
homography-based DIC approach recently proposed by the authors [16]. 
Then, the integration of the optical distortion correction into the DIC 
algorithm is detailed and its numerical extra cost is quantified. 
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2.1. HR-EBSD problem 

In the following, an orthonormal frame R = O( X1
̅→

, X2
̅→

, X3
̅→

) is 
attached to the diffraction volume involved in the generation of the 
reference pattern. As shown in Fig. 2, X3

̅→ is perpendicular to the scin-
tillator while X1

̅→ and X2
̅→ are aligned with the screen width and height, 

respectively. By definition, the straight (O, X3
̅→

) intercepts the scintil-
lator at the pattern centre PC = [0 0 DD ]

T, where DD denotes the 
sample to detector distance. The displacements visible on the scintillator 
are related to the elastic deformation gradient Fe (expressed in ℜ) 
through the following equation [20]: 

X′

=
DD

(Fe.X). X3
̅→(Fe.X), (1)  

where X = [ x1 x2 DD ]
T is a point in the reference pattern and X′

=

[ x′

1 x′

2 DD ]
T its matching point in the target pattern. Note that in this 

article, the coordinates in the scintillator plane ( X1
̅→

, X2
̅→

) are written in 
lower-case or upper-case letters depending on whether they are 
expressed relative to the PC or to the upper-left corner of the image 
(absolute coordinates). The HR-EBSD problem thus consists in regis-
tering the diffraction patterns, i.e. identifying the matching points X and 
X′ in order to recover Fe. 

The lattice rotations and the elastic strains are then deduced by 
considering either an infinitesimal framework: 

Fe = I + ω + ε

where ω =

⎛

⎝
0 − ω3 ω2

ω3 0 − ω1
− ω2 ω1 0

⎞

⎠ and ε =

⎛

⎝
ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

⎞

⎠ (2)  

or a “finite rotation – small strain” theory [27]. The latter implies a left 
polar decomposition of the deformation gradient tensor into a sym-
metric stretch matrix v, expressing the pure deformation in the config-
uration rotated by the matrix R: 

Fe = v.R ≈ (I+ ε).R. (3) 

This is detailed in Appendix A, in particular regarding the deduction 
of the lattice rotations ωi from the Rij components. 

As mentioned in the introduction, the technique is insensitive to 
hydrostatic dilatation of the lattice. The projection of the 3-dimensional 
diffraction signal on the 2-dimensional scintillator makes the effects of 
ε33 indistinguishable from those of a combination of ε11 and ε22. Actu-
ally, the deviatoric deformation gradient F̂e = Fe/Fe

33 (i.e. ε33 is always 
0) has to be considered in Eq. (1). Fortunately, the six elastic strain 
components can be isolated by assuming a traction-free surface condi-
tion, which provides an additional relationship based on Hook’s law: 

∈33 = −
1

C3333
[C3311.∈11 +C3322.∈22 + 2.(C3323.∈23 +C3331.∈31 +C3312.∈12)]

(4)  

where ∈ij and Cijkl denote the elastic strain components and the elastic 
stiffness coefficients expressed in the sample frame. 

Finally, it should be recalled than beyond the transformation Fe it-
self, the target and the reference pattern also experience a trans-
formation caused by the probe displacement during the beam scan: 
δPC = [ δ1 δ2 δDD ]

T (Fig. 3). On the one hand, the target pattern is 
translated by [ δ1 δ2 ]

T with respect to the reference one. This quantity 
corresponds to the displacement of the pattern centre of the target, 
PCTGT , with respect to the one of the reference, PCREF. On the other hand, 
the variation δDD of the sample-to-detector distance DD is responsible 
for an isotropic scaling by a factor α = (DD − δDD)/DD with respect to 
PCTGT . Accounting for these effects is nowadays routinely performed by 
HR-EBSD methods as shown in the next section. 

2.2. Homography-based image registration 

The diffraction patterns are registered through a large and unique 
subset for which the relative deformations are modelled by a first-order 
homography. Often met in photogrammetry to describe 2D projective 
transformations, it is also suitable for the HR-EBSD technique as shown 
in Ernould et al. [16]. Such a parametrisation of the image displace-
ments and displacement gradients implies eight deformation parameters 
hij, which are stored in a deformation vector 

p = (h11 h12 h13 h21 h22 h23 h31 h32)
T (5)  

and commonly arranged in a warp (or shape) function W as follows: 

W(p) =

⎛

⎝
1 + h11 h12 h13

h21 1 + h22 h23
h31 h32 1

⎞

⎠ (6) 

In this way, the parameters hi1, hi2, hi3, and h3i account for a dilatation, 
a shear, a translation, and projective effects in the Xi

→ direction (i = 1,2), 
respectively. An illustration of the effect of each deformation parameter is 
available in [16]. 

It is necessary to define a centre X0 = [X01 X02 ]
T for the homog-

raphy. The latter arbitrarily coincides with the geometrical centre of the 
scintillator (see Fig. 2). The point X in the reference pattern and its 
matching point X′ in the target pattern are identified by their position with 
respect to the homography centre, denoted ξ = X − X0 and ξ′

= X′

− X0, 
respectively. They are related to the shape function as follows: 

ξ′

= W(p).ξ. (7) 

Homogeneous coordinates are considered in this equation. The lo-
cations ξ and ξ′ are 3-dimensional vectors representing the 2-dimensional 

Fig. 1. Simulated electron diffraction pattern subjected to (a) no optical distortion, (b) barrel, (c) pincushion and (d) tangential distortions. The solid green lines 
highlight the displacements, which are here exaggerated as compared to experimental conditions. The red dot shows the optical centre. 
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points X and X′ of the scintillator plane in Euclidean coordinates, 
respectively. Unlike Euclidean coordinates, a point admits an infinity of 
equivalent representations in homogeneous coordinates (see [16] for 
more details). The first two components of ξ are equal to the Euclidean 
coordinates if the third one is 1. As a consequence, ξ = [ ξ1 ξ2 1 ]

T is 
taken as a possible representation of X − X0 since in this case ξi =Xi − X0i. 

The height deformation parameters of the homography are deter-
mined iteratively in the spatial domain by means of an inverse- 
compositional Gauss-Newton (IC-GN) algorithm, similar to all other 
I-DIC approaches [30–32]. However, the homography-based approach 
differentiates itself from I-DIC approaches in terms of implementation. 
I-DIC approaches require the precise knowledge of the projection ge-
ometry during the GN algorithm in order to directly obtain the 8 
components of F̂e (the ninth being F̂e

33 = 1). This also involves inte-
grating the variations of the projection geometry in the GN-algorithm 
[30,31] or the pre-processing of the diffraction patterns to remove 
their effects [32]. On the contrary, the homography-based approach 
does not take into account the projection geometry at all during the GN 
algorithm. As shown above, the parametrisation of the homography is 
based on the absolute coordinates of the points forming the subset. 

As detailed in Ernould et al. [16], from which the two following 

equations are extracted, a homography accounts for both the trans-
formation F̂e and the effects due to the variation δPC of the projection 
geometry. The projection geometry and its variations are only consid-
ered after the image registration to analytically deduce F̂e from the hij 

parameters measured by the IC-GN algorithm. Knowing the position of 
the homography centre with respect to PCREF, i.e. X0 = [ x01 x02 0 ]

T, 
those parameters are first corrected into ĥij to withdraw the scaling and 
translation induced by δPC: 

⎛

⎜
⎜
⎜
⎝

ĥ11 ĥ12 ĥ13
ĥ21 ĥ22 ĥ23
ĥ31 ĥ32 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

h11 +1 − γ1.h31

α − 1
h12 − γ1.h32

α
h13 − γ1

α
h21 − γ2.h31

α
h22 +1 − γ2.h32

α − 1
h23 − γ2

α
h31 h32 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(8)  

where γi = δi + x0i.(α − 1) with i = 1, 2. Note that the expression of γi 
slightly differs from the one previously given by the authors in [16], in 
which the δi were multiplied by α. This stems from the order in which the 
scale due to a variation in DD and the translation implied by the PC 
displacement are applied. This is clarified in Appendix B. Finally, the 

Fig. 2. Principle of the integrated correction. The diffraction patterns are registered in the optically undistorted “computation space” by assuming the first-order 
homography. Whenever a location is required at location X′ (or X) in this space (blue dots), the distortions model D determines the actual location X̃′ (or X̃) to 
be interpolated in the optically distorted patterns (red dots) forming the “interpolation space”. 
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solution F̂e (expressed in ℜ) is deduced by a term-by-term identification 
with Eq. (1), which leads to the following relationships:  

where β = 1 − ĥ31.x01 − ĥ32.x02. 

2.3. Principle of the integrated correction of the optical distortion 

As with all other HR-EBSD methods, the homography-based mea-
surements are only valid provided that the diffraction patterns are 
optically undistorted. However, camera lenses and mounting defects 
affect the recorded patterns, for which the displacement field cannot be 
faithfully modelled by Eq. (1) any more. A possible solution is to pre- 
process all the diffraction patterns before the analysis. Here, this step 
is avoided by integrating a correction of optical distortions in the GN- 
algorithm. 

The correction principle is not specific to the homography-based 
approach, but also transferable to global I-DIC ones. It is based on the 
distinction between a “calculation space” and an “interpolation space”, for 
which the integrated correction deals as an interface. As Fig. 2 illustrates, 
the “calculation space” refers to the core of the GN-algorithm, which 
measures the homography parameters (or the F̂e

ij components) describing 
the transformation occurring between two optically undistorted patterns. 
As its name implies, the “interpolation space” refers to the distorted pat-
terns which are interpolated. Whenever the GN-algorithm requires the 
signal intensity at position X or X′ in the distortion-free reference or 
deformed configurations, the correction determines their associated lo-
cations X̃ or X̃′ to be interpolated into the distorted reference or target 
patterns, respectively. The correction thus consists of a distortion model 
D such that X̃ = D(X) or X̃′

= D(X′

). 
The nature of D and the position of the optical centre Xopt are camera 

dependant. Consequently, the user has to prescribe them at the begin-
ning of the DIC analysis. The correction principle remains nevertheless 
unchanged and valid as long as:  

(i) All the diffraction patterns amongst a dataset are equally affected 
by optical distortions, which is reasonably true since they are 
acquired by the same camera.  

(ii) The distortion model D exclusively depends on the input location, 
which is the case of the most current models [56,58]. 

2.4. Implementation of the IG-GN algorithm 

In the following, the main steps of the IC-GN algorithm are listed for 
a better understanding of the implementation of both the integrated 
correction and the homography. For the sake of brevity, the mathe-
matical background and assumptions of the IC-GN algorithm are not 
exposed. They can be found in the literature [59–61] and more specif-
ically in Ruggles et al.’s paper [31]. 

During the IC-GN algorithm, the reference subset remains un-
changed. It is thus precomputed as well as the Hessian matrix evaluated 
for p = 0. In ATEX-software [62], the reference subset r is defined as a 
vector of size N to ease the definition of a subset of any shape. For each 
location ξ forming the subset, the reference pattern R is interpolated at X̃ 
(or X in the absence of correction) and the mean value r of the 
so-obtained subset is then subtracted, which gives: 

r(ξ) = R
(

X̃
)
− r where r =

∑

ξ
R
(

X̃
)
. (10) 

Besides, Δr, the root square of the sum of the squares of r is 
computed: 

Δr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

ξ
r(ξ)2

√

. (11) 

Regarding the Hessian matrix, it implies to precompute the steepest 
descent images, SDI(ξ, p) (N× 8). To this purpose, ∇R(ξ) (N× 2), the 
intensity gradients of the reference is multiplied by the Jacobian of the 
shape function JW(ξ, p) (2× 8) evaluated for p = 0: 

SDI(ξ, p)|p=0 = ∇R(ξ)T
.JW(ξ, p)|p=0. (12) 

More specifically, this leads to the following calculation:  

where ∇Ri(X̃) denotes the intensity gradient of R along the direction Xi
→

at location X̃ (or X in the absence of correction). Note that ξi = Xi − X0i, 

F̂e =
1
β

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + ĥ11 + ĥ31.x02 ĥ12 + ĥ32.x01
ĥ13 − ĥ11.x01 − ĥ12.x02 + x01.(β − 1)

DD

ĥ21 + ĥ31.x02 1 + ĥ22 + ĥ32.x02
ĥ23 − ĥ21.x01 − ĥ22.x02 + x02.(β − 1)

DD

DD.ĥ31 DD.ĥ32 β

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)   

SDI(ξ, p)|p=0 =

⎡

⎢
⎣

⋮ ⋮
∇R1

(
X̃
)

∇R2

(
X̃
)

⋮ ⋮

⎤

⎥
⎦.

⎡

⎢
⎢
⎣

ξ1 ξ2

0 0

1 0

0 ξ1

0 0

ξ2 1

− ξ2
1 − ξ1.ξ2

− ξ1.ξ2 − ξ2
2

⎤

⎥
⎥
⎦ (13)   
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even in the presence of a correction since the ξ locations are related to 
the “computation space” (see Fig. 2). Finally, the (symmetric) Gauss- 
Newton Hessian matrix (8× 8) is deduced from the steepest descent 
images, which will also be reused: 

H =
[
SDI(ξ, p)|p=0

]T
.
[
SDI(ξ,p)|p=0

]
. (14) 

For each target pattern, the IC-GN algorithm is guided by an initial 
guess. The algorithm then computes the incremental deformation vector 
Δp and iterates until convergence or until a maximum number of iter-
ations is reached. At each iteration, the following steps are carried out:  

1) Compute the warped coordinates X′

= [X′

1 X′

2 ]
T using Eq. (7) since 

X′

i − X0i = ξ
′

i/ξ
′

3 (dividing by ξ′

3 is necessary to get back to Euclidean 
coordinates).  

2) If required, correct optical distortions by deducing the location X̃′

from X′ according to the distortion model D.  
3) Construct the warped target subsets t by interpolating the distorted 

target pattern T at location X̃′ and subsequent computation of Δt, 
similarly to Eqs. (10) and (11), respectively.  

4) Deduce the residuals δ (N× 1) between the reference and the target 
subsets: 

δ(ξ) = r(ξ) − Δr
Δt

.t(ξ). (15)    

5) Compute the gradient of correlation criterion ∇C (8× 1): 

∇C(p) =
[
SDI(ξ, p)|p=0

]T
.δ(ξ). (16)    

6) Compute of the incremental deformation vector Δp by solving the 
following equation using Cholesky decomposition: 

H.Δp = − ∇C(p). (17)    

7) Study the convergence and update the vector p using an inverse- 
compositional scheme (literal formulas are implemented to avoid 
the matrix inversion): 

W(p) = W(p)∘W− 1(Δp). (18)   

2.5. Numerical over-cost of the integrated correction 

The extra cost of the correction is evaluated by executing the IC-GN 
algorithm with and without correction and measuring the processing 
time in both cases. 20,000 iterations are performed (p being reset at the 
beginning of each one) and the processing time is recorded every 1,000 
iterations to ensure that the execution speed is relatively constant. This 
is the case since the intermediate times do not differ by more than 2% 
from the average. 

The Brown-Conrady distortion model is considered. It accounts for 
both radial and tangential distortions up to the third order through the 
distortion coefficients Ki and Pi (i ∈ [[1,3]]), respectively: 

⎛

⎝ X̃1

X̃2

⎞

⎠ =

(
X1

X2

)

+
(
K1.r2 + K2.r4 + K3.r6).

(▵1

▵2

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Radial

+
(
1 + P3.r2).

⎛

⎝
P1.
(
r2 + 2.Δ2

1

)
+ 2.P2.▵1.▵2

P2.
(
r2 + 2.Δ2

2

)
+ 2.P1.▵1.▵2

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Tangential

(19)  

where Δi = Xi − Xopt
i with i = 1, 2 and r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ2
1 + Δ2

2

√

It is chosen since it is widely adopted in the fields of photogrammetry 
and computer vision [53]. More specifically, Mingard et al. [37] cali-
brated multiple commercial EBSD cameras using a simplified version of 
this model. 

The correction is accompanied by a lengthening of the calculation 
time of ∼6.2% when using biquintic B-splines for interpolation, for 
which the 36 B-splines coefficients are precomputed. Note that the result 
is expressed as a percentage because the processing time is highly 
dependant on the computer. This percentage is expected to increase if a 
less computationally demanding interpolation scheme is used, since in 
the latter case the numerical cost of the IC-GN algorithm decreases while 
that of the correction remains unchanged. A second measurement is 
consequently conducted considering bicubic interpolation for which the 
16 interpolation coefficients are precomputed as well. The computation 
lasts ∼ 8.2% longer when applying the correction. Such a difference is 
rather anecdotal given that high order interpolation schemes are rec-
ommended for accuracy purpose [29]. Moreover, the intensity gradients 
can be derived (and interpolated) from the B-splines coefficients, mak-
ing this type of interpolation particularly consistent with the imple-
mentation of the IC-GN algorithm [61]. 

3. Numerical validation 

This section proposes a numerical validation of the homography- 
based approach and its integrated correction of optical distortions. 
The generation of the test data is first detailed and the investigated cases 
are exposed. 

3.1. Generation of the test datasets 

A dynamically simulated pattern of unstrained aluminium orientated 
by the triplet of Euler’s angles (75◦, 125◦, 15◦) is generated using the 
open-source software EMsoft 4.2 [63]. The parameters of the simulation 
are given in Appendix C. A pattern of 2400× 2400 pixels with a pixel 
size of 20 µm deals as a “source image”, from which smaller patterns of 
size 1200× 1200 are extracted, as Fig. 3 illustrates. The latter resolution 
is chosen accordingly to the Bruker e− Flash HR+ camera attached to our 
SEM. For each pixel in the test image, its antecedent in the source image 
is interpolated. This implies to take into account the transformation Fe, 
the effects induced by the probe displacement δPC as well as the optical 
distortions. 

As indicated by the red disks in Fig. 3, the first step is to determine the 
location X′ in the deformed and optically undistorted configuration asso-

ciated with each integer-pixel location X̃
′

forming the distorted pattern. In 

other words, the inverse distortion model D− 1 such that X′

= D− 1(X̃
′

) is 
required. If any distortion model D can be integrated into the DIC analysis, 
non-linearity issues occur when reversing complex models like the one in 
Eq. (19). The distortion model is consequently reduced to a first-order 
radial distortion (i.e. K1 only) for the purpose of the numerical valida-
tion. In this way, exact inverse relationships do exist [53] as detailed in 
Appendix D. As mentioned in the introduction, the radial distortion has a 
predominant effect. It is mostly modelled by the first-order term while 
third and higher-order terms are usually negligible [56]. 

Once the location X′ is identified, the second step is the calculation of 
its antecedent X by the transformation Fe in the undistorted and unde-
formed configuration. If the projection geometry remains constant, this 
is equivalent to reversing Eq. (1): 

X =
DD

(
Fe− 1

.X′
)
. X3
̅→

(
Fe− 1

.X′
)

(20) 

As mentioned in Section 2.1, the projection geometry varies during a 
beam scan. To account for those variations, X′ should be replaced by 
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X̂ ′

= X′

− δPC in Eq. (20) (see Fig. 3). Finally, an offset of 600 pixels is 
applied to the absolute coordinates of X in order to interpolate the 
source image, which is twice larger than the generated patterns. 

The test patterns are not the result of individual dynamical simula-
tions. Some diffraction effects such as the variation of the band contrast 
with orientation or a change in the width of the Kikuchi bands in the 
presence of elastic strains are consequently not reproduced. Although 
raised by Maurice et al. [27], the influence of the band contrast varia-
tions has never been specifically quantified and the authors did not 
notice an error increase with the disorientation angle (up to 15◦) when 
using dynamically simulated patterns. Recently, Vermeij & Hoefnagels 
[30] pointed out that the variation in the width of the Kikuchi bands 
remains a second-order effect, the correlation being according to the 
authors’ words “still very accurate” (i.e. their error remains <2×10− 5), 
even when 1% elastic strain is present. More generally, the principle of 
the HR-EBSD technique, i.e. Eq. (1), has been largely validated from 
both simulated [22,24,27,30,31,38] or experimental [20,21,32,64,65] 
patterns over the past 15 years. Ignoring these diffraction effects is 
therefore not a hindrance to the validation of the homography-based 
approach. Indeed, it is sufficient to demonstrate that the displacement 
field based on Eq. (1) is faithfully measured. 

Moreover, the present approach will reveal that the interpolation 
bias alone can limit the resolution of the HR-EBSD technique to 
∼1×10− 4. If not specifically mentioned, the interpolation will be per-
formed using the B-splines coefficients. In this way, the test images are 
generated and registered using the same interpolation scheme (i.e. 
biquintic B-splines), which strongly reduces the interpolation bias [66]. 
On the one hand, this allows possible small errors induced by optical 
distortions to be better observed and quantified. On the other hand, the 
influence of the interpolation bias on the DIC accuracy can be observed 
by generating test patterns using a bicubic interpolation of the source 
image in some cases. 

Finally, the avoidance of computationally demanding dynamical 

pattern simulations enables a large number of cases to be tested, as listed 
now. 

3.2. Investigated cases and DIC parameters 

The elastic strains εij and the lattice rotations ωi components 
expressed in the detector frame ℜ are given as input, from which the 
deformation gradient tensor is computed by considering its left polar 
decomposition in Eq. (3). To allow a direct comparison of the solution 
measured by the DIC with the input values, ε33 will be systematically set 
to 0. 

The method is applied to 1416 test patterns equally divided into two 
groups:  

(i) For the first one (Table 1), the lattice rotations are set such that 
the disorientation angle Δθ varies from 0.1 to 14◦. There are 118 
cases: 58 for which the disorientation angle is equally distributed 
on each one of the three rotation axes and 60 cases for which the 
disorientation is fully carried on a single axis (20 cases per axis, 
the values of disorientation angles are in bold in the table). The 
sign of the rotation is random. For these 118 cases, six elastic 
strain states are investigated (118× 6 = 708 patterns in total). As 
shown in Table 1, these six strain states differentiate themselves 
from their von Mises equivalent elastic strain εvm, namely, 
0 (unstrained), 5×10− 4, 2×10− 3, 5×10− 3, 1×10− 2, and 2×10− 2.  

(ii) The second group (Table 2) is constructed conversely to the first 
one. The equivalent elastic strain varies from 1×10− 4 to 5×10− 2 

so that it encompasses the levels of elastic strains usually 
observed in metals (i.e. <2 to 5×10− 3) as well as the larger one 
observed in semiconductors (i.e. of the order of 10− 2). Similar to 
the first group, there are 118 cases: 58 for which the elastic strain 
components are assigned the same absolute value and 60 cases for 
which all the strain is carried on a single component (12 cases per 

Fig. 3. Sketch of the HR-EBSD geometry. The patterns of size 1200× 1200 are constructed by interpolating a simulated pattern of unstrained aluminium of size 
2400× 2400 (source image). 
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components, ε33 is not considered since it is set to 0). These 118 
cases are then associated with six disorientation angles, namely 0, 
0.3, 0.6, 1, 1.5, and 3◦, for which the lattice rotations are equally 
distributed on each one of the three axes. Small disorientation 
angles are favoured since accurate elastic strain measurements 
are usually performed in purely elastically or slightly plastically 
deformed materials. 

A typical projection geometry is considered by placing the pattern 
centre of the reference pattern at the absolute coordinates [ 625 400 ]

T 

while DD is 16 mm. All the target patterns admit a projection geometry 
differing by δPC = [5 − 3 − 1.0919 ]

T pixels, which would be caused 
by a displacement of the probe of ∼115 µm on a sample surface tilted by 
70◦. Note that the pixel size being 20 µm, DD is here increased by 21.838 
µm since the third component of δPC (i.e. δDD) is negative. As Fig. 3 
illustrates, a positive displacement δPC in the X3

̅→ direction brings the 
probe closer to the detector. 

The IC-GN algorithm is performed on a square subset of size 901×

901 pixels located at the centre of the pattern. Biquintic B-splines are 
systematically considered and the convergence criterion is 0.001 pixel. 
The initial guess is provided by the cross-correlation based approach 
introduced in [16], for which a subset of 1024×1024 pixels is used. It 
relies on successive Fourier-Mellin and Fourier transforms based 
cross-correlation algorithms, which measure the in-plane rotation and 

translation between the reference and the target pattern, respectively. 
The height deformation parameters of the homography are then ini-
tialised from these measurements, as detailed in Appendix E. The elastic 
strain and the lattice rotation components are deduced from the defor-
mation gradient F̂e recovered by the DIC measurements using the “finite 
rotation – small strain” theory (Eq. (3) and Appendix A). 

3.3. Numerical validation of the correction 

The error on each elastic strain εij or lattice rotation ωi component is 
defined as the absolute value of the difference between measures and 
inputs. In the following, the maximum error E amongst all the compo-
nents will be considered: 

E = max
( ⃒
⃒εij − εinput

ij

⃒
⃒,
⃒
⃒ωi − ωinput

i

⃒
⃒
)

where (i, j) ∈ [[1, 3]]. (21) 

First, the test patterns are both generated and registered using 
biquintic B-spline coefficients and the homography-based approach is 
applied to optically undistorted patterns (no correction required). This 
will deal as a comparison basis in terms of accuracy. Since no significant 
difference in error is observed between the six strain states (Table 1) or 
the six disorientation angles (Table 2), the error is represented in Fig. 4a, 
b in the form of a dark-coloured region delimited by the minimum and 
the maximum of the error E observed amongst those six cases. The 
maximum errors as a function of the disorientation angle (Fig. 4a) or as a 

Table 1 
Overview of the test cases with a disorientation angle ranging from 0.1 to 14◦.  

118¼58þ3×20 cases with varying disorientation angle Δθ  

58 cases 20 cases* 20 cases* 20 cases* 
ω1,2,3 = ±Δθ/

̅̅̅
3

√ ω1 = ±Δθ, ω2,3 = 0  ω2 = ±Δθ, ω1,3 = 0  ω3 = ±Δθ, ω1,2 = 0  

where Δθ ∈ [0.1◦,14◦]

*in bold / [◦] 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.22 0.24 
0.26 0.28 0.30 0.33 0.37 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.0 1.1 1.2 
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4 2.6 2.8 3.0 3.3 3.7 
4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0 10.3 10.7 11.0 11.5 12.0 13.0 14.0  

6 strain states with varying von Mises equivalent elastic strain εvm  

εvm  Unstrained ∼ 5× 10− 4  ∼ 2× 10− 3  ∼ 5× 10− 3  ∼ 1× 10− 2  ∼ 2× 10− 2  

ε11 [10− 4] 0 1.7 − 10 − 11 50 83 

ε12 [10− 4] 0 − 2.3 6 22 − 41 96 

ε13 [10− 4] 0 2.5 − 11 24 52 77 

ε22 [10− 4] 0 − 1.9 5 16 − 44 95 

ε23 [10− 4] 0 2 9 25 − 30 83 

ε33 [10− 4] 0 0 0 0 0 0  

Table 2 
Overview of the test cases with an equivalent elastic strain ranging from 1×10− 4 to 5×10− 2.  

118¼58þ3×20 cases with varying von Mises equivalent elastic strain εvm  

60 cases 12 cases* 12 cases* 12 cases* 12 cases* 12 cases* 
εij = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(3.εvm2)/16

√ ε11 = εvm  ε12 = εvm  ε13 = εvm  ε22 = εvm  ε23 = εvm  

Except for ε33 = 0  All other components εij = 0  

where εvm ∈ [1 × 10− 4, 5 × 10− 2]

*bold / 10− 4   1 2 3 4 5 6 7 8 9 10 12 14 16 

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 
48 50 52.5 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5 
85 87.5 90 95 100 125 150 175 200 250 300 350 400 450 500  

6 disorientation angles Δθ  

Δθ [◦] 0 ∼ 0.3  ∼ 0.6  ∼ 1  ∼ 1.5  ∼ 3  
ω1 [◦] 0 0.173 0.346 0.577 0.866 1.732 
ω2 [◦] 0 0.173 0.346 0.577 0.866 1.732 
ω3 [◦] 0 0.173 0.346 0.577 0.866 1.732  
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function of the equivalent elastic strain (Fig. 4b) are comparable in 
terms of both average and maximum values. The mean error is globally 
of about 5× 10− 7. In the worst case, a maximum of ∼1×10− 5 is observed 
at the highest disorientation angles for which the warped subset starts to 
come out of the image, but this remains particularly low anyway. 

If such small errors can, of course, be partly attributed to the nature 
of the test images (noise-free ideal signal), the interpolation bias is also a 
determining factor. As previously mentioned, the pattern generation 
adopted in this study enables the interpolation bias to be strongly 
reduced. To highlight the noticeable influence of the latter on the ac-
curacy, the synthetic experience is repeated, but a bicubic interpolation 
is used for the pattern generation. The error, reported in blue in Fig. 4a, 
b, is one order of magnitude higher than previously, but also more 
scattered. It typically varies from ∼1×10− 6 to ∼1×10− 5. However, a 
larger error of ~1×10− 4 is made at the smallest disorientation in Fig. 4a 
or in the absence of disorientation (Δθ = 0◦) for equivalent elastic 
strains εvm below ∼2×10− 3 in Fig. 4b (plotted separately in blue-dash 
line). For those cases, the interpolation bias may become of the order 
of the displacements to be tracked, which are amongst the smallest in the 
dataset. Consistently, the error gradually decreases with the angular 
disorientation in Fig. 4a while the blue-dash line reaches the level of the 
other cases as the strain level increases in Fig. 4b. Interestingly, an error 
of ~1×10− 4 corresponds to the commonly admitted resolution of the 

HR-EBSD technique. 
The homography-based approach is now applied to optically dis-

torted patterns using the proposed integrated correction. Same as 
previously, the patterns are first generated using biquintic B-splines. 
Based on Mingard et al. [37], 10 values of K1 ranging from 3× 10− 8 to 
− 9 × 10− 8 are investigated, namely 3, 1, − 0.5, − 1, − 2, − 3, − 4, 
− 5, − 7, − 9 (×10− 8). The optical centre Xopt is common to all the 
datasets with a typical shift of [ − 30 +20 ]

T pixels with respect to the 
scintillator centre X0. The results are summed up in Fig. 4c,d. 

For all the investigated K1 values (dark regions), the error is typical 
between ∼1×10− 6 and ∼1×10− 5. It is higher than when using undis-
torted patterns, especially in the absence of disorientation (Δθ = 0◦, 
black dash line in Fig. 4d). Since the formulas are exact from the 
mathematical point of view [53], such an increase can be attributed to 
numerical instabilities in the inverse distortion model during the pattern 
generation. Indeed, very small numbers (K9

1 ≈ 10− 63) have to be 
multiplied by very large ones (r18 ≈ 1052). The error nevertheless re-
mains relatively small (∼1×10− 5), which validates the correction 
principle. 

An additional dataset is generated using a bicubic interpolation for 
K1 = − 3 × 10− 8 only, which is typical of the EBSD cameras having a 
resolution superior to 1000×1000 pixels [37]. Like for the biquintic 

Fig. 4. Error as a function of the disorientation angle (a,c) and as a function of the equivalent elastic strain (b,d) when the DIC analysis is applied without correction 
to optically undistorted patterns (a,b) or with the correction to optically distorted patterns (c,d). The coloured areas are delimited by the minimum and the maximum 
of the error amongst all the investigated deformation states (a,c) or disorientation angles (b,d) except regarding Δθ=0◦ (dash lines). 
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B-splines, the minimum error in Fig. 4c,d (bottom of the blue regions) is 
also higher than in Fig. 4a,b, which is consistent with the alleged nu-
merical instabilities. Note that ‘minimum’ refers here to the minimum of 
the maximum error E amongst the six investigated strain states or 
disorientation angles, not to the actual minimum error on the elastic 
strain or lattice rotation components. Apart from that, the maximum 
error and the observed trends remain overall the same. 

The present results validate the principle of the integrated correction 
of the optical distortions for the global HR-EBSD approaches involving a 
GN-algorithm. Its impact on the accuracy of the DIC analysis is minimal, 
especially in view of the interpolation bias or the commonly admitted 
accuracy of ∼1×10− 4 of the HR-EBSD/HR-TKD techniques. 

4. Influence of the optical distortion on accuracy 

Synthetic experiments are relevant for validation purpose, but the 
distortion model is by definition a limited description of the actual op-
tical distortions. Even if quite complex effects can be faithfully 
modelled, it must be checked that an approximate correction does not 
induce greater errors than the aberrations themselves lead to. More 
precisely, the required accuracy regarding the constants of the distortion 
model should be evaluated. 

The error caused by neglecting the optical aberrations is first 
assessed for various K1 values. The influence of the disorientation angle 
Δθ and the equivalent elastic strain εvm is discussed as well. The neces-
sity of a correction, even at low disorientation angles, is then demon-
strated before investigating the influence of the pattern centre and 
optical centre locations on the error. Finally, the loss of accuracy due to 
an approximate correction is evaluated. 

4.1. Error in the absence of correction 

In this section, the DIC analysis is applied without correction to the 
distorted datasets from Fig. 4c,d (K1 = − 3× 10− 8) generated using 
biquintic B-splines (the bicubic interpolation is no more considered). 
The results are displayed in Fig. 5a and b, where each one of the solid 
coloured lines corresponds to a specific strain state or disorientation 
angle. The errors obtained when using the integrated correction are also 
reported in the lower part of the figure to ease visual comparison. 

In the absence of a correction, the maximum error is always higher 

than ∼1×10− 4. It soars with the disorientation angle (Fig. 5a). This in-
crease is also clearly visible in Fig. 5b for equivalent elastic strains below 
∼5×10− 3. In comparison, the level of the strain does not affect the error, 
which remains relatively constant over the investigated range of 
equivalent elastic strain in Fig. 5b. No clear trend is neither observed in 
Fig. 5a, especially for disorientations higher than ∼0.5◦. 

The absence of correction is also accompanied by the appearance of 
oscillations of the error. They highlight that the homography alone 
cannot fully describe the underlying displacement field. Only a local 
optimum can be found by the IC-GN algorithm. Noting that the main 
part of the displacement field is imposed by the lattice rotations, those 
oscillations are particularly visible in Fig. 5a, for which the chosen 
magnitude and the sign of the lattice rotation are constantly varying (see 
the input in Table 1). The oscillation amplitudes also consistently in-
crease with the angular disorientation difference between successive 
points. As a consequence, the increase of the error with the disorienta-
tion angle starts becoming less visible in Fig. 5b as soon as the elastic 
strains generate displacements as large as the one imposed by the lattice 
rotations, i.e. for strain levels of about 5×10− 3 (∼0.3◦). However, these 
oscillations (Fig. 5b for strains >5×10− 3) are not such as to call into 
question the trends observed in Fig. 5a. 

Since the equivalent elastic strain shows only a marginal effect on the 
error, the six curves associated with different strain states in Fig. 5a are 
averaged and a linear regression is conducted. As shown in Fig. 6, this is 
repeated to the nine other datasets with varying K1, each one leading to 
a coefficient of determination R2 of about 0.956. Note that no better 
correlation could be obtained by considering other models such as a 
second-order polynomial fit, an exponential, or a power law. 

The more distorted the patterns, the steeper the increase of the error 
with the disorientation angle. Actually, both the slope (Fig. 6a) and the 
y-intercept (Fig. 6b) of the straight-lines fitting the error are propor-
tional to the absolute value of K1 (with R2>0.999). As discussed later, 
such a linear dependency is consistent with the literature. The red dash 
lines in Fig. 6a also highlight that a pincushion distortion (i.e. K1 > 0) 
induces the same error as a barrel one (K1 < 0) of the same magnitude. 
Neglecting the radial distortion generates errors higher than 1×10− 4 

even if a relatively small coefficient K1= − 5×10− 9 is present (except 
below ∼1◦). More generally, the error is of the order of 1 to 5×10− 3 for 
K1 values between -2×10− 8 and -4×10− 8, which are typical values for 
EBSD cameras [37]. It can nevertheless be as high as 10− 2 for stronger 

Fig. 5. Error as a function of the disorientation angle (a) and as a function of the equivalent elastic strain (b) when the DIC analysis is applied with or without 
correction to optically distorted patterns (K1 = − 3× 10− 8). 
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radial distortions. 

4.2. On the necessity of a correction 

As shown in Fig. 5a,b, disabling the correction results in an error 
higher than 1×10− 4, even at the lowest disorientation angles, in the case 
of a typical barrel distortion of K1= − 3×10− 8. Therefore, optical 
distortion correction is required to ensure that HR-EBSD techniques 
reach this level of accuracy, even when both the reference and the target 
patterns are distorted in the same manner. 

In addition to the maximum error, the errors on each elastic strain or 
lattice rotation components are displayed as a function of the disorien-
tation angle in Fig. 7a-c when εvm= 0, εvm=5×10− 3 and εvm=2×10− 2, 
respectively. These scatter plots are associated with the black, orange, 
and brown curves of the maximum error in Fig. 5a (no correction). They 
look quite similar since the influence of the equivalent elastic strain level 
is marginal as compared to that of the disorientation angle. 

Overall, the lattice rotation components ω1 and ω2 (dark and light 
blue dots) present the highest errors, but the applied value is also higher 
as compared to the elastic strains (0.1◦≈1.7×10− 3 radians). The error on 
ω3 is smaller, which will be discussed in the next section. Regarding the 
elastic strain components, the shear ε13 (orange dots) is the most 
affected by the optical distortions. At low disorientation, i.e. 

Δθ ≤∼ 0.3◦, the errors on elastic strains may look marginal. However, 
they need to be compared to the magnitude of the applied values in 
order to conclude whether optical distortion effects are negligible or not. 
To this purpose, the relative error on each component or its maximum 

Er = max

(

|
εij − εinput

ij

εinput
ij

|, |
ωi − ωinput

i

ωinput
i

|

)

where (i, j) ∈ [[1, 3]]. (22)  

are now considered. Note that when the input value is 0, the relative 
error of the concerned component is not displayed and omitted in the 
calculation of the maximum relative error. 

Fig. 7d-f show the relative errors on each component as a function of 
the disorientation angle in cases where εvm=5×10− 4, εvm=2×10− 3, and 
εvm=1×10− 2, respectively. In addition, Fig. 5a and b (no correction) are 
replotted in terms of maximum relative error in Fig. 7g and h, respec-
tively. Note that the black curves (εvm=0 or Δθ=0◦) are absent since the 
maximum relative error in those cases would rely on a minority of 
components, biasing the comparison with the other curves. Perfectly 
unstrained or lattice rotation free materials are seldom (or never) met in 
practice anyway. 

It arises that the maximum relative error is higher than 10% of the 
applied value in a quasi-systematic way. The relative errors are all the 
more significant as the disorientation angle increases (Fig. 7g) or as the 
level of equivalent elastic strain is low (Fig. 7h). More precisely, relative 
errors of several tens or hundreds percent are easily made, especially 
when εvm ≤2×10− 3 (Fig. 7h). For those cases, errors of about 1 to 
2×10− 4 induced by a radial distortion of K1= − 3×10− 8 are far from 
being negligible. As highlighted in Fig. 7d and e, such magnitudes 
represent 10% to 100% of the applied elastic strain values. 

Here, neglecting the optical distortion becomes acceptable (i.e. less 
than 10% error) only for a large equivalent elastic strain of about 1% or 
more in the presence of angular disorientations of less than 1◦, as shown 
in Fig. 7f. This scatter plot explains the increase of the relative error 
observed at low disorientation angles in Fig. 7g, in the presence of large 
elastic strain (εvm ≥1%, red and brown curves). For those cases, the 
maximum relative error is prescribed by the relative error on the ω1 and 
ω2 components (light and dark blue dots). 

It arises that a typical radial distortion (K1= − 3×10− 8) has to be 
corrected to accurately measure elastic strains or lattice rotations. 
Otherwise, an accuracy of about 1 to 2×10− 4 cannot be reached while 
making relative errors of several tens or hundreds percent on the elastic 
strain components. The relative error only appears acceptable (i.e. less 
than 10%): 

(i) Only regarding the elastic strain components when disorienta-
tions are below ∼ 1◦, provided that the elastic strain level is of the 
order of 1% or more. 

(ii) Only regarding the lattice rotation components for disorienta-
tions higher than ∼0.3◦, no matter the elastic strain level. 

In order to determine the extent to which the present results are 
generalisable, the influence of the PC and optical centre locations on the 
error is now investigated. 

4.3. Influence of the pattern centre and the optical centre locations 

Six datasets only differing by the position of their pattern centre 
and their optical centre are generated. They are designated by the 
letters from A to F in Fig. 8, in which the absolute coordinates of the 
pattern centre and the optical centre are given and illustrated. The PC 
locations are chosen such that typical EBSD (A, B, C), off-axis TKD (D), 
and on-axis TKD (E, F) configurations are considered. The optical 
centre is either off-centre as before (A, D, E), or it coincides with the 
pattern centre (C, F) or it is at the centre of the image without coin-
ciding with the pattern centre (B). These datasets are all subjected to a 
typical distortion of K1 = − 3 × 10− 8 and the projection geometry is not 

Fig. 6. (a) Linear regression of the error obtained in the absence of correction 
during the subpixel registration as a function of the disorientation angle. The 
slope increases linearly with the modulus of the radial distortion coefficient K1. 
(b) Linear regression of the error obtained in the absence of disorientation, as a 
function of the radial distortion coefficient. 
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Fig. 7. (a-c) Errors and (e-f) relative errors on each elastic strain or lattice rotation components when a radial distortion of coefficient K1 = − 3 × 10− 8 is neglected, 
in the cases where εvm is equal to (a) 0, (b) 5 × 10− 3, (c) 2 × 10− 2, (d) 5 × 10− 4, (e) 2 × 10− 3, and (f) 1 × 10− 2. (g-h) Maximum relative error as a function of (g) the 
disorientation angle Δθ and (h) the equivalent elastic strain εvm (same dataset as in Fig. 5). 
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varying (δPC = 0). 
The DIC analysis is conducted without correcting the optical dis-

tortions. The maximum error of each one of the 1416 investigated cases 
is displayed on the scatter graph in Fig. 8a-b. No significant difference is 
visible between the six datasets, except for some points in the bottom 
region of Fig. 8a. The latter actually corresponds to the special cases 
where the rotation is purely in-plane (ω1 = ω2 = 0). The rotation ω3 is 
measured correctly when the PC and the optical centre coincide, i.e. for 
the datasets C (orange diamonds) and F (black dots), for which the errors 
are only related to the presence of elastic strains. 

To better quantify the differences between the datasets, the error of 
“F” (centred and coinciding optical and pattern centres) is taken as a 
reference. All the points from Fig. 8a-b are considered except the not 

suitable special cases mentioned above. The distributions of the error 
differences in Fig. 8c show that the absolute differences are almost al-
ways below 1.5×10− 4 which is marginal as compared to the errors 
induced by the negligence of the distortion itself. From this standpoint, 
the positions of the pattern centre and optical centre are not determinant 
for the error induced when neglecting the optical aberrations (of typical 
radial distortion coefficient K1 = − 3×10− 8). Therefore, the different 
SEM-configurations are expected to be affected similarly by the presence 
of optical distortions. 

4.4. Required accuracy on the correction parameters 

Based on the previous results, only the case A is now considered (off- 

Fig. 8. Influence of the pattern centre and the optical centre positions on the error. (a) Error as a function of the disorientation angle. (b) Error as a function of the 
equivalent elastic strain. The table gives the absolute coordinates of the pattern and optical centres for the investigated cases A to F illustrated on the diffraction 
patterns. (c) Distribution of the differences (in absolute value) of the maximum error of each dataset with respect to F. 
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Fig. 9. Error associated with the use of erroneous correction parameters.  
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centred and non-coinciding optical and pattern centres). The DIC anal-
ysis is performed using erroneous correction parameters. The maximum 
offsets such that the error remains below 1×10− 4 for disorientation 
angles smaller than 3◦ is investigated. Larger disorientation angles are 
discarded because they are mostly associated with plastically deformed 
materials for which pattern blurring prevents both SEM calibration [40] 
and elastic strains [32,16] to be accurately determined. 

First, an offset is applied either to the optical centre absolute co-
ordinates, [570 620 ]

T pixels, or to the radial distortion coefficient 
K1 = − 3× 10− 8. Numerous calculations were performed. They first 
revealed that applying an offset on the true coefficient K1 or 
neglecting a distortion of the same magnitude induce a similar error. 
As might be expected from Fig. 6a, in which pincushion and barrel 
distortions were shown to imply the same error, it is equivalent to 
underestimate or overestimate K1. 

Relevant calculations regarding the required accuracy on the 
correction parameters are displayed in Fig. 9. An offset of magnitude 
±1×10− 9 on K1 is acceptable as the error remains below 5×10− 5 

(Fig. 9a). Note that the error reaches 1×10− 4 for disorientation angles of 
∼6.5◦. However, such an error is already made for ∼3◦ when the offset is 
between 2×10− 9 (Fig. 9b) and 2.5×10− 9 (Fig. 9c). Regarding the optical 
centre, the error remains below 5×10− 5 for all the investigated cases as 
long as the prescribed position is not farther than ∼7 pixels of the true 
position (Fig. 9d). The error reaches 1×10− 4 for disorientations of about 
3◦ when the prescribed optical centre is ∼15 pixels away from its true 
position (Fig. 9e). 

Finally, computations are made with an optical centre shifted from 
its true position by 1 to 3 pixels as well as a K1 coefficient experiencing 
an error of 1×10− 9. The error remains mostly below 5×10− 5 and sys-
tematically below 1×10− 4 for all the investigated cases (Fig. 9f). 

5. Discussion 

The synthetic experiments carried out in this work show that more 
accurate elastic strain measurements can be performed on optically 
distorted patterns directly by integrating a distortion model in the GN- 
algorithm. The accuracy of the ‘global’ HR-EBSD approach conducted 
here is not affected by the integrated correction. As addressed in Section 
3.3, the observed differences in the error levels, in the absence (Fig. 4a 
and b) or the presence of a correction (Fig. 4c and d), are ‘only’ visible 
because (i) special attention was paid in the reduction of the interpo-
lation bias (ii) numerical instabilities occur with the inverse distortion 
model, which is not required in practice. It is clear that the correction 
will not introduce noticeable error in experimental applications unless 
an inappropriate distortion model or erroneous distortion coefficients 
are prescribed by the user. The correction principle remains just the 
same for TKD patterns, on which global DIC has already been applied 
when using the “on-axis” configuration [16,67]. 

The test patterns considered in this study were not dynamically 
simulated patterns. A typical error of ∼5×10− 7 is consequently achieved 
in optical distortion-free patterns. This error is expected to be higher 
when some diffraction effects such as the variation of the band contrast 
with changing orientation or variations in the width of the Kikuchi 
bands under the presence of elastic strains are correctly accounted for in 
the input images. Based on the literature, the impact of those effects on 
the accuracy of the HR-EBSD technique seems however marginal, as 
detailed in Section 3.1. Only the results obtained in the presence of very 
large elastic strains about 2 to 5% might be subject to discussion, 
although the work by Vermeij & Hoefnagels [30] tends to indicate that 
the mechanical model of the HR-EBSD technique, Eq. (1), is still 
acceptable. Anyway, the spirit of this study is rather to investigate the 
effects of optical distortions rather than the homography-based DIC 
approach [16,67] itself. Therefore, the results in Section 3.3 serve 
mainly to show that the errors observed in this study are almost exclu-
sively due to optical distortions. 

Moreover, the image generation adopted in the present work also 
highlighted that the influence of the interpolation scheme on the accu-
racy is at least as important as the not reproduced diffraction phenom-
ena (which can also be subjected to simulation errors). As observed in 
Fig. 4 and 5, the error is typically ∼5×10− 6 (∼3×10− 5 in the worst case) 
for optically distorted patterns when the test images are generated using 
the biquintic B-splines coefficients whereas the use of a bicubic inter-
polation scheme leads to errors of ∼1× 10− 4 at the smallest disorien-
tation angles. Yet, the DIC analysis is executed using exactly the same 
code and parameters. Note that using bicubic interpolation, Britton et al. 
[24] achieved accuracy of about 2×10− 4 on dynamically simulated 
patterns as they proposed the remapping technique. 

First raised by Maurice et al. [42], the influence of the interpolation 
bias on accuracy has become an increasingly inevitable topic, first with 
the introduction of the remapping technique and nowadays with the 
emergence of global DIC approaches for the subpixel registration [16, 
30–32] or new algorithms for one pass remapping [28]. Ruggles et al. 
[31] indicated that they preferred cubic B-splines to more computa-
tionally demanding biquintic B-splines since the accuracy improvement 
was marginal. Although no quantitative indication is given, such 
observation underlines the necessity to determine the optimal interpo-
lation scheme for HR-EBSD, in particular regarding the elastic strain 
measurements performed in the presence of low lattice rotations (i.e. <
∼0.5◦). 

By avoiding the uncertainties inherent to the simulation software 
while minimising the influence of the interpolation bias, the pattern 
generation routine adopted in this study eased the investigation of the 
error due to the presence of optical aberrations over a large number of 
cases (1416 per dataset). More precisely, the DIC analysis and its inte-
grated correction were validated from various strain levels up to 5×10− 2 

in the presence of angular disorientations up to 14◦. Values were notably 
prescribed on the ε13 and ε23 out of plane shear components while nu-
merical validations from the literature mostly apply normal 
deformations. 

As shown in Section 4, when neglected, a first-order radial distortion 
induces an error on the elastic strain or lattice rotation components 
which increases linearly with the absolute value of the distortion coef-
ficient K1, but also with the disorientation angle (Fig. 6), i.e. the 
magnitude of the imposed displacement. Such a linear relationship, 
already pointed out by Britton et al. [38] regarding K1 is actually well 
known in the literature. It is precisely used to estimate the first-order 
radial distortion by applying a planar translation to an object and 
measuring the error on the displacement and (phantom) strain field 
[57]. Regarding the magnitude of the error, it is of the order of 1 to 
5×10− 3 for a typical barrel distortion (K1 = − 3±1×10− 8) in the 
presence of reasonably large rotations (Δθ ≤ 8◦). This is consistent with 
the order of 10− 3 announced by Britton et al. [38]. However, larger 
errors of the order of 10− 2 can be made at larger rotations, especially for 
significant barrel distortion close to 10− 7 as they did. A direct compar-
ison of both studies is, however, hard since they cross-correlated dis-
torted patterns with a distortion-free reference pattern, while all 
patterns undergo the same optical distortion in this work. Note that no 
distortion-free reference pattern was matched to optically distorted 
target patterns in this work for two reasons: (i) the use of a strain-free 
simulated reference is still limited by the uncertainty on the projection 
geometry [38,41,48,49], (ii) the errors would be greater than the pres-
ently observed ones [38], making the necessity of a correction even 
more crucial. 

If both the reference and the test patterns are distorted in the same 
manner, Britton et al. [38] concluded that the optical distortions 
constitute a second-order issue, especially at low disorientation angles. 
They indeed noticed that neglecting a relatively large barrel distortion of 
10− 7 only induces an error of about 1.5% of the applied value on the 
worst-affected elastic strain component for a disorientation angle of 
2.5◦. The present study contradicts this statement. As highlighted in 
Fig. 5, neglecting a lower distortion of K1 = − 3×10− 8 already induces 
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a maximum error (Eq. (21)) at least as high as the usually claimed ac-
curacy of the HR-EBSD technique, i.e. 1×10− 4. Notable errors ranging 
from 5 to 8×10− 4 are even observed although only a disorientation 
angle of barely 1◦ is considered. More than the level of the error itself, 
Fig. 7d-h showed that relative errors are quasi systematically higher 
than 10%. Relative errors of several tens to several hundred percent are 
even reached, especially when the elastic strain is below 2×10− 3, which 
is typical of the metallic materials investigated using HR-EBSD 
techniques. 

Yet, all these observations are consistent with the previous study by 
Britton et al. [38]. The 1.5% error announced by the authors is actually 
obtained by dividing the 6.1×10− 4 error on the worst-affected elastic 
strain component by the 4.4×10− 2 (radians) applied rotation, instead of 
the applied strain which is zero in their study. The relative error on 
elastic strain is logically either indeterminate or infinite, but it is about 
600% if a measurement noise of 1×10− 4 is assumed. As pointed out by 
the grey region in Fig. 8a, the pure w3 rotation they considered appears 
to be a specific case which tends to underestimate the error. Based on 
Fig. 8c, the present observations are quite generalisable since the posi-
tion of the pattern centre with respect to the one of the optical centre 
only shows a marginal impact on the error induced by neglecting a 
radial distortion of K1 = − 3×10− 8. 

The proposed integrated correction offers a significant accuracy 
improvement (Fig. 4c-d) provided that the estimated correction pa-
rameters are reasonably close to the true ones. As highlighted in Fig. 9, 
an integer pixel accuracy on the optical centre coordinates as well as the 
uncertainty of 1×10− 9 (3,3%) on the distortion coefficient K1 of typical 
value − 3×10− 8 is sufficient to ensure the error does not exceed 
∼5×10− 5 for disorientation angles lower than 3◦ Such uncertainties 
correspond to the resolution of the values given by Mingard et al. [37]. 
Accounting for the optical distortions for accurate HR-EBSD measure-
ment is thus not a hindrance as the determination of the projection ge-
ometry can be. 

As shown in Section 2.5, the correction is not expected to extend the 
execution time of the IC-GN algorithm by more than 5–10%, depending 
on the complexity of the interpolation scheme and the distortion model. 
Since this percentage is evaluated from a fixed number of iterations, no 
direct conclusions should thus be drawn regarding the duration of the 
full analysis. On the one hand, the numerical cost of the integrated 
correction has to be compared to the one induced by the pattern pre- 
processing step conducted so far. On the other hand, it depends on the 
relative importance of the subpixel registration with respect to the other 
steps, namely the image filtering, the pre-computation of the interpo-
lation coefficient, or the initial guess. The systematic use of the correc-
tion of the optical distortion is consequently recommended since a 
substantial or moderate gain in accuracy is then achievable at a small 
computation expense (depending on the elastic strain and disorientation 
levels, see Fig. 7). Of course, a suitable distortion model has to be used 
while the data and the SEM calibration should lend themselves to precise 
measurements. 

In the present case, the integrated correction resulted in a shorter 
analysis than if the patterns had been pre-processed (i.e. interpolated 
once, in order to undistort them followed by the second interpolation to 
warp them during the subpixel registration). Indeed, computing the 
biquintic B-splines coefficients lasts as long as ∼100 iterations of the IC- 
GN algorithm, which typically converged in 2 to 30 iterations. Note that 
the number of iterations is below 100 in Vermeij & Hoefnagels [30] 
when considering dynamically simulated patterns having between 10 
and 20% noise, but also in Ernould et al. [16], where a 15% strained 
interstitial free steel specimen is investigated. 

Ideally, the present work should be extended to more complex dis-
tortions models. A preliminary step would be to finely characterise the 
optical distortion of EBSD cameras. amongst the numerous methods for 
optical distortion measurement, the work by Dufour et al. [68] in which 
a printed calibration target is compared to its digital version has raised 

our attention in many ways. Not only this method has a particularly high 
resolution on displacements (up to ∼2.5×10− 3 pixels), but it is also 
versatile and adaptable to different distortion models. Even more 
noticeable, it relies on a DIC approach based on parametric image 
registration similar to ‘global’ HR-EBSD approaches. Its integration in a 
‘global’ HR-EBSD software would be, to our point of view, particularly 
relevant. Indeed, a part of the code could be common so that any 
improvement would be beneficial to both aspects, making the imple-
mentation task very effective. 

Finally, the HR-EBSD technique should benefit from good practices 
and hardware improvements. amongst them, one example is turning on 
the camera about ∼2 hours before the orientation map acquisition to 
prevent errors caused by the self-heating of the camera, in particular the 
one of the CCD [69]. This can also be limited by the use of high-quality 
bilateral telecentric lenses [70] (i.e. the entrance and exit pupils are at 
infinity). In addition, such lenses are subjected to significantly reduced 
optical distortions as compared to conventional ones. Aside from their 
cost, the limitations of such systems (fixed field of view with non-
adjustable magnification and limited depth focus) do not concern EBSD 
cameras which film a fixed and flat scintillator. 

6. Conclusions 

Correction of the optical distortions caused by camera lenses has 
been integrated to the Gauss-Newton algorithm used by ‘global’ HR- 
EBSD approaches. The DIC analysis is thus applied to the experimental 
distorted patterns directly, avoiding their pre-processing without sub-
stantially impacting the numerical cost of the subpixel registration. The 
choice of the distortion model depends on the camera and can be set by 
the user. The correction’s principle remains however unchanged. Here, 
it is implemented in the homography-based HR-EBSD approach and 
validated numerically for various levels of first-order radial distortion 
over a large range of disorientation angles (0 to 14◦) and elastic strain 
levels (0 to 5×10− 2). Out of this, the following conclusions can be set up: 

• Accounting for optical distortions is highly recommended for the ac-
curate measurements of elastic strains in the typical range of 1×10− 4 to 
2×10− 3, even when disorientations below 1◦ and both distorted 
reference and target patterns are considered (K1 = − 3× 10− 8). 
Otherwise, a typical accuracy of ∼1×10− 4 cannot be ensured. More-
over, relative errors from several tens to several hundred percent can be 
made on the elastic strain components.  

• If a first-order radial distortion of coefficient K1 is neglected, the 
induced error increases linearly with the absolute value of K1 (barrel 
or pincushion distortions are equivalent). Another linear increase 
with the disorientation angle is observed whereas the elastic strains 
have marginal influence. The error remains relatively unaffected by 
the absolute position of the optical centre in the image or its position 
relative to the pattern centre. 

• Neglecting a typical barrel distortion of -2 to -4×10− 8 generates er-
rors in the order of 1 to 5×10− 3 on the elastic strain and lattice 
rotation components. An integer-pixel accuracy on the optical centre 
coordinates as well as a resolution of 1×10− 9 on the first-order radial 
distortion coefficient ensures the correction effectiveness (i.e. the 
error here remains below 5×10− 5).  

• The interpolation bias is a determining factor for the accuracy of the 
DIC analysis, in particular at low disorientation angles (<0.3–0.5◦). 
Alone, it can limit the accuracy of the technique to 1×10− 4 when the 
test patterns were generated using a bicubic interpolation. 
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Appendices 

A. Left polar decomposition of the deformation gradient 

In ATEX-software [62], the singular value decomposition of the deformation gradient, Fe = W.Σ.VT, where Σ is a 3× 3 diagonal matrix containing 
the singular values while W and V are two 3× 3 unitary matrices, is used to determine the left stretch tensor 

v = W.Σ.WT , (A.1)  

and the rotation matrix 

R = W.VT . (A.2) 

By definition, the rotation matrix R is obtained from the three lattice rotations ωi (i ∈ [[1,3]]) as follows: 

R =

⎛

⎝
c2.c3 s1.s2.c3 − c1.s3 c1.s2.c3 + s1.s3
c2.s3 s1.s2.s3 + c1.c3 c1.s2.s3 − s1.c3
− s2 s1.c2 c1.c2

⎞

⎠ (A.3)  

where ci = cos(ωi) and si = sin(ωi). The lattice rotations are deduced as follows: 

ω1 = atan
(

R32

R33

)

+ η.π (A.4)  

ω2 = atan

⎛

⎜
⎝ −

R31
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
11 + R2

21

√

⎞

⎟
⎠ (A.5)  

ω3 = atan
(

s1.R13 − c1.R12

c1.R22 − s1.R23

)

+ η.π (A.6)  

where η =

{
1 if ω2 = π/2
0 otherwise . 

As shown in Eq. (3), the deduction of the elastic strain components from the left stretch tensor is simpler: ε = v − I. However, this was found to be 
incorrect when considering the deviatoric deformation gradient F̂e (F̂e

33 = 1), for which ε̂ = 1
v33
.(v − v33.I) should be used instead. 

B. Correction of the homography parameters 

The displacement by a vector [ δ1 δ2 ]
T of the pattern centre of the target pattern with respect to the reference one generates a translation of the 

whole target pattern by this amount. This translation is modelled by the following matrix 

T =

⎛

⎝
1 0 δ1
0 1 δ2
0 0 1

⎞

⎠ (B.1)  

since x′

i = xi + δi, which gives ξ′

i = ξi + δi after subtracting by x0i (i = 1,2), i.e. by the relative coordinates of X0 with respect to the pattern centre (ξ 

= X − X0 and ξ′ = X′ − X0). Similarly, the displacement by δDD. X3
̅→ of the source point induces isotropic scaling of the pattern by a factor α 

= (DD − δDD)/DD with respect to the pattern centre. This scaling is expressed by the matrix 

S =

⎛

⎝
α 0 x01.(α − 1)
0 α x02.(α − 1)
0 0 1

⎞

⎠ (B.2)  

since x′

i = α.xi, which leads to ξ′

i = α.ξi + x0i.(α − 1) after noticing that x′

i = α.xi + α.x0i − α.x0i and subtracting by x0i. 

The contribution of T and S has to be removed from the measured homography parameters hij before deducing the deformation gradient F̂e . When 
modelling the effects of a variation in the projection geometry, the order in which the scaling and the translation must be applied depends on the 
definition of the x0i (i = 1, 2). Here, it is measured with respect to the pattern centre of the reference so the scaling has to be applied prior to the 
translation, i.e. the transformation is 

T.S =

⎛

⎝
α 0 δ1 + x01.(α − 1)
0 α δ2 + x02.(α − 1)
0 0 1

⎞

⎠ (B.3)  

and not 
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S.T =

⎛

⎝
α 0 α.δ1 + x01.(α − 1)
0 α α.δ2 + x02.(α − 1)
0 0 1

⎞

⎠ (B.4) 

as indicated by the authors in [16] (the only difference is that the δi are no more multiplied by α). 
The total transformation W measured by the DIC (Eq. (6)) can be actually viewed as T.S.Ŵ , where Ŵ is the corrected homography associated with 

the transformation F̂e in Eq. (9). The (undistorted) reference pattern is first warped according to ̂W . The so-obtained deformed pattern is then affected 
by variations of the projection geometry, which leads to the (undistorted) target pattern. The relationships giving the corrected deformation pa-
rameters ĥij in Eq. (8) are consequently obtained by computing Ŵ = (T.S)− 1

.W where 

(T.S)− 1
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/α 0 −
δ1 + x01.(α − 1)

α

0 1/α −
δ2 + x02.(α − 1)

α

0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (B.5)  

C. Simulation parameters in EMSoft 4.2 

Table C.1 regroups the parameters used for the simulation of the diffraction pattern in EMsoft 4.2. 

D. Inverse radial distortion coefficients 

The following relationships are adapted from Drap et al. [53], where a radial distortion up to the fourth order (i.e. with 4 Ki coefficients) is exactly 
inverted using another radial distortion model, but of the ninth order. In the case of first-order radial distortion, the point of absolute coordinates 

[X1 X2 ]
T in the undistorted configuration admits for image 

[

X̃1 X̃2

]T 
in the distorted configuration according to the distortion model 

D :

⎛

⎝ X̃1
X̃2

⎞

⎠ =

(
X1
X2

)

+ K1.r2.

(
Δ1
Δ2

)

(D.1)  

where r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ2
1 + Δ2

2

√

with Δi = Xi − Xopt
i (i = 1,2), the Xopt

i being the absolute coordinates of the optical centre. The inverse distortion model 

D− 1 :

(
X1

X2

)

=

⎛

⎝ X̃1

X̃2

⎞

⎠+
∑9

i=1
bi.r2i.

(
Δ1

Δ2

)

(D.2)  

where Δi = X̃i − Xopt
i (i = 1,2) involves nine coefficients bi which are analytically deduced from K1 according to Eq. (D.3) to (D.11). 

b1 = − K1 (D.3)  

b2 = 3.K2
1 (D.4) 

Table C.1 
Parameters of the dynamical pattern simulation in EMsoft 4.2.  

Material Pattern simulation parameters 

Element Aluminium Camera tilt angle 0◦

Structure FCC Euler angles (75◦, 125◦, 15◦) 
Lattice parameter 0.4 nm Detector size 2400× 2400  
Debye-Waller factor 0.004 nm2 Pixel size 20 µm   

DD 16 mm 
Monte Carlo simulation parameters PCx, PCy 0, 0 
Number of electrons 2× 109  Bit depth 16-bit (integer) 
Specimen tilt angle 70◦ Incident beam current 150 nA 
Incident beam energy 20 keV Beam dwell time 100 µs 
Minimum energy to consider 15 keV Energy range (min) 20 keV 
Energy bin size 1 keV Energy range (max) 20 keV 
Maximum exit depth 100 nm Include background no 
Depth step size 1 nm Include noise no   

Gamma value 0.33 
Master pattern simulation parameters   
Smallest D-spacing 0.05 nm   
Master pattern size 1000 (2001× 2001)    
Bethe parameters 4 / 8 / 50    
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b3 = − 12.K3
1 (D.5)  

b4 = 55.K4
1 (D.6)  

b5 = − 273.K5
1 (D.7)  

b6 = 1428.K6
1 (D.8)  

b7 = − 7752.K7
1 (D.9)  

b8 = 43, 263.K8
1 (D.10)  

b9 = − 246, 675.K9
1 (D.11)  

E. Initialisation of the homography 

The height deformation parameters hij of the homography are initialised from the cross-correlation based initial guess introduced in [16]. Its 
implementation has been improved and the target subset is now rotated, instead of the reference one. As illustrated in Fig. E.1. It first estimates the 
in-plane rotation θ0 around X3

̅→ between the target subset and the reference subset. The target subset is then rotated by − θ0 with respect to its centre. 
Finally, the remaining translation t1. X1

̅→
+ t2. X2

̅→ between the so-obtained subset and the reference subset is measured. 
As indicated by Fig. E.1, the rigid transformation from the reference configuration to the deformed configuration is obtained by applying the 

measured translation, and then the rotation of angle θ0 with respect to X0. It is described by the following deformation parameters: 
⎡

⎣
h11 + 1 h12 h13

h21 h22 + 1 h23
h31 h32 1

⎤

⎦ =

⎡

⎣
cos(θ0) − sin(θ0) t1.cos(θ0) − t2.sin(θ0)

sin(θ0) cos(θ0) t1.sin(θ0) + t2.cos(θ0)

0 0 1

⎤

⎦, (E.1)  

which is designated in [16] as the ‘partial’ initialisation of the homography since h31 and h32 are left equal to zero. The ‘complete’ initialisation of the 
homography is achieved by first estimating the three lattice rotations ωi in the detector frame, from which the rotation matrix R is deduced (see Eq. 
(A.3)). The hij parameters are then analytically deduced from R̂ = R/R33 conversely to Eq. (9) (see [16] for more details). 

As a consequence of the improvements brought to the code as compared to [16], the lattice rotations are estimated from the cross-correlation based 
measurements as follows: 

ω1 = atan
(− Δ2

DD

)
with Δ2 = t2 − x01.sin(θ0) + x02.(cos(θ0) − 1) (E.2)  

ω2 = atan
(Δ1

DD

)
with Δ1 = t1 + x01.(cos(θ0) − 1) + x02.sin(θ0) (E.3)  

ω3 = θ0 (E.4) 

Equations (E.2) and (E.3) are obtained by stating that the image of a point by the rigid transformation in equation (E.1), 
{

ξ
′

1 = cos(θ0).ξ1 − sin(θ0).ξ2 + cos(θ0).t1 − sin(θ0).t2

ξ
′

2 = sin(θ0).ξ1 + cos(θ0).ξ2 + sin(θ0).t1 + cos(θ0).t2

, (E.5)  

has to match the image of a point by a translation Δ1. X1
̅→

+ Δ2. X2
̅→ followed by a rotation of angle θ0 with respect to the pattern centre (not X0): 

Fig. E.1. Illustration of the working principle of the global cross-correlation based initial guess. Note that the on-axis TKD patterns are the same as the one used 
in [16]. 
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{
ξ
′

1 = cos(θ0).x1 − sin(θ0).x2 + cos(θ0).Δ1 − sin(θ0).Δ2 − x01

ξ
′

2 = sin(θ0).x1 + cos(θ0).x2 + sin(θ0).Δ1 + cos(θ0).Δ2 − x02

. (E.6) 

Note that by definition of ξ and ξ′ : ξ′

i = x′

i − x0i and xi − ξi = x0i. Moreover, the projection geometry (i.e. x01, x02, and DD) does not need to be very 
accurate at this stage since it is the initial guess. 
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