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1. Introduction

1.1 Context and content of the chapter
As detailed in Chapter “Measuring elastic strains and orientation gradients by

scanning electron microscopy: Conventional and emerging methods” by
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Ernould et al., the present work was conducted as part of the first author’s

PhD thesis at the University of Lorraine from 2017 to 2020 (Ernould, 2020;

Ernould, Beausir, Fundenberger, Taupin, & Bouzy, 2020a, 2020b, 2021). It

deals with the development of a high-angular resolution method for the

measurement of lattice rotations and elastic strains in the scanning electron

microscope. This kind of technique is known as the HR-EBSD or, more

recently, the HR-TKD technique, depending on whether it is applied to

electron backscatter diffraction (EBSD) patterns or transmission Kikuchi dif-

fraction (TKD) patterns. In the following, “HR-EBSD/TKD” will be used

when no distinction is needed regarding the SEM-based configuration used.

Working principle of high-angular resolution technique in the SEM is to

determine the elastic deformation gradient tensor Fe between two points of

the crystal from the observation of its effects on the scintillator, i.e., from the

displacement field between two Kikuchi patterns, one being the “reference”

pattern and the other the “target” one. The displacement field is measured

with a subpixel resolution by means of digital image correlation techniques.

Precise knowledge of the projection geometry as well as its variation

between the two points of the crystal are required to interpret displacements

in terms of lattice rotations and elastic strains. The HR-EBSD/TKD tech-

nique is insensitive to hydrostatic dilatation so the components of the

deviatoric deformation gradient tensor F̂
e
are determined. A traction-free

surface assumption (Hardin et al., 2015; Wilkinson, Meaden, & Dingley,

2006b) lifts the ambiguity.

The way the displacement field is evaluated is central to developments

of the method over the years. The original method proposed by Wilkinson

et al. (2006a, 2006b) is based on local translation measurements, by means

of Fourier-transform based cross-correlation (FT-CC), between typically

20 to 200 small square subsets taken across the reference and target patterns.

The components of F̂
e
are then computed by solving an overdetermined sys-

tem of equations (Villert, Maurice, Wyon, & Fortunier, 2009; Wilkinson

et al., 2006b). The method has been continuously improved since 2006.

Since translation outliers strongly affect the solution (Britton et al., 2010),

weighted iterative solving was proposed (Britton & Wilkinson, 2011). The

hypothesis of a pure translation between subsets becoming unsuitable in

the presence of rotations of few degrees, remapping techniques (Britton &

Wilkinson, 2012; Maurice, Driver, & Fortunier, 2012; Zhu, Kaufmann, &

Vecchio, 2020) pre-align a patternwith respect to the other to ensure an accu-

rate shift measurement.
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Despites several improvements, the implementation of the “local”

approach suffers from gray area in the literature, and its performances are

subject to controversy or contradiction as detailed in Chapter “Measuring

elastic strains and orientation gradients by scanning electron microscopy:

Conventional and emerging methods” by Ernould et al. More generally,

guidelines in the choice of parameters (size, number, and arrangement of

subsets) would also deserve some clarification. That is why the bibliographic

review was extended to image registration techniques for surface displace-

ments and deformations measurement during the first author’s thesis

(Ernould, 2020). Initial goal was to contribute to the development of the

local method. One possibility considered was to authorize relative deforma-

tion of the subsets, according to affine transform (a square transform into a

parallelogram). Such kind of transformation is largely used in the field of

experimental mechanics. The idea was to draw inspiration from digital

image correlation techniques typically applied to speckles patterns painted

on macroscopic specimens, but also to follow general recommendations.

Actually, this has resulted in the development of a novel

HR-EBSD/TKD approach (Ernould, 2020; Ernould et al., 2020a, 2021).

It is a “global” approach, i.e., based on a single and large region of interest,

in opposition to the original “local” approach. Relative deformation of the

subset is allowed and described by a linear homography, which is a geomet-

ric transformation commonly used in computer vision to model projective

transformations.

This chapter explicit the reasoning leading to the emergence of this

global approach. It all starts with general notions concerning image registra-

tion, which consists in determining the spatial geometric or light intensity

transformation to be applied to a target image in order to make it correspond

to the reference image. The registration problem is characterized by the fol-

lowing four criteria (Brown, 1992), the choice for each of which will be

discussed:

i. Some primitives, which correspond to the information extracted from

the images and used for their registration (features, contours, pixel

intensity, etc.).

ii. A type of transformation, which defines the space of solutions to be

explored.

iii. A similarity criterion, which quantifies the similarity between the

images.

iv. An optimization strategy, which determines the optimal transformation

between the two images, i.e., the one leading to the highest similarity.
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1.2 Reminder of notations and equations

Let X1
�!

, X2
�!

, X3
�!� �

be the scintillator’s frame, whose axes X1
�!

and X2
�!

are

aligned with the scintillator’s edges as shown in Fig. 1A. X2
�!

is downwards

to be consistent with the usual matrix representation of images. For the sake

of clarity, points belonging to the scintillator are denoted in two ways:

– Uppercase letters, X¼ [X1 X2]
T, mean that absolute (or pixel) coordi-

nates are considered. The origin is the upper left corner of the scintillator.

– Lowercase letters, x ¼ x1 x2½ �T , mean that relative coordinates with

respect to pattern center (PC) are considered. The latter admits

XPC ¼ XPC
1 XPC

2

� �T
as absolute coordinates, i.e., xi ¼ Xi�Xi

PC (i¼1, 2).

Let ℜ ¼O X1
�!

, X2
�!

, X3
�!� �

be a coordinate system, where O is the source

point of the diffraction signal, located at a distance DD away from the scin-

tillator (Fig. 1B). A point x ¼ x1 x2 DD½ �T belonging to the reference

pattern is displaced by

u ¼ Fe � Ið Þ:x (1)

under the effect of the elastic deformation gradient tensor Fe. This transfor-

mation induced a shift s ¼ x0 �x between the reference and the target

patterns, where

x0 ¼ DD

Fe:xð Þ:X3
�! Fe:xð Þ: (2)

This relationship is stated by Thales’ theorem (OA/OA0 ¼OB/OB0 in
Fig. 1B) and it can be expanded as follows:

Fig. 1 Scintillator frame and points definition.
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x01
x02
DD

2
64

3
75 ¼

DD: Fe
11:x1 + Fe

12:x2 + Fe
13:DD

� �
Fe
31:x1 + Fe

32:x2 + Fe
33:DD

DD: Fe
21:x1 + F̂

e

22:x2 + Fe
23:DD

� �
Fe
31:x1 + Fe

32:x2 + Fe
33:DD

DD

2
666664

3
777775: (3)

It constitutes the basis of all the proposed HR-EBSD/TKD techniques, so it

will be referred as the “HR-EBSD/TKD problem.”

2. Area-based image registration

2.1 Feature-based vs area-based methods
Determination of the transformation between images is based on a set of ele-

ments called primitives. Depending on their nature, the registrationmethods

are qualified as feature-based or area-based, or even hybrid by combining the

two previous types, as detailed in the literature review by Zitová and Flusser

(2003).

Feature-based methods reduce information to few distinctive objects

such as edges, line intersections, closed-boundary regions, etc. Their choice

and detection are crucial. Each primitive in the reference image is then mat-

ched to the corresponding primitive in the target image to deduce the trans-

formation. Feature-based methods are to be preferred, provided that there

are sufficient primitives, distributed over the entire image while being easily

detectable, distinguishable and precisely locatable.

Area-based (or intensity-based) methods consider the intensities of the

pixels of the images. Therefore, they are sensitive to relative intensity var-

iations such as noise. The absence of information reduction also makes their

numerical cost higher than that of feature-based methods, especially when

complex deformations are measured. For accuracy issues, the regions of

interest should be as large as possible as long as its allowable relative defor-

mations ensure a faithful description of the underlying displacement field

(Pan, 2018; Pan, Qian, Xie, & Asundi, 2009; Zitová & Flusser, 2003).

A contrario, smaller subsets should be considered, as is the case in the local

HR-EBSD/TKD technique.

2.2 Motivations for choosing an area-based method
Kikuchi patterns contains many salient structures for which automatic detec-

tion is possible. However, their distinction raises questions. Indeed, the
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diffraction contrast is not very diversified in terms of shape since it is com-

posed exclusively of Kikuchi bands. Uniqueness of a primitive is also

questioned by crystal symmetry. The implementation of a fully automated

feature-based method seems therefore laborious.

Conversely, area-based methods are automatic due to the absence of data

reduction. Moreover, none of the main drawbacks raised by Zitová and

Flusser (2003) seem critical regarding the HR-EBSD technique:

i. The local approach has already shown that even small subsets of a

Kikuchi pattern contain remarkable information.

ii. The potentially high numerical cost is nowadays counterbalanced by

the increase in available computing power.

iii. Sensitivity to intensity variations can be reduced by pattern filtering and

by using robust similarity criteria.

As a conclusion, an area-based method is considered.

3. Parametric description of the deformations
by a homography

3.1 Shape function and homogeneous coordinates
The ability to faithfully describe the displacement field at the subset scale is

paramount to measurement accuracy (Pan, 2018; Pan et al., 2009; Zitová &

Flusser, 2003). A shape function is a parametric model describing the pos-

sible deformations for the subset. It involves deformation parameters, which

are stored in a vector p and arranged in the shape function W. The latter

relates a point in the undeformed reference subset ξ to its image in the

deformed target subset ξ0:

ξ0 ¼W pð Þ:ξ: (4)

ξ and ξ0 are defined with respect to an arbitrary point X0, the subset

geometry center for instance. They are either computed from the points’

absolute coordinates (uppercase letters), ξ¼X�X0 and ξ0 ¼X0 �X0

(Fig. 2A), or from their coordinates relative to the PC (lowercase letters),

ξ¼x�x0 et ξ0 ¼x0 �x0, where x0¼X0�XPC, x¼X�XPC and

x0 ¼X0 �XPC (Fig. 2B). Both ways give the same vector (red in Fig. 2)

so there is only one notation for ξ and ξ0.
Homogeneous coordinates are considered in Eq. (4). They are often pre-

ferred to Euclidean coordinates in the field of computer vision since they

ease computations. To better understand, let’s take a simple example like

pure translation in the plane. There are two deformation parameters, namely
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the shifts t1 and t2 along the directions X1
�!

and X2
�!

, respectively. The defor-

mation vector is thus: p¼ t1 t2½ �T . Let ξ ¼ ξ1 ξ2½ �T and ξ0 ¼ ξ01 ξ02
� �T

be

the Euclidian coordinates of a subset point in the reference and deformed

configurations, respectively. It is obvious that ξi
0 ¼ξi+ ti (i¼1, 2), but find-

ing a suitable shape function W to be substituted in Eq. (4) is less so.

Actually, the translation is defined as follows when considering Euclidean

coordinates:

ξ01
ξ02

	 

5

1 0

0 1

	 

:
ξ1
ξ2

	 

+

t1

t2

	 

: (5)

By adding an additional component as compared to Euclidean coordinates,

homogeneous coordinates solve this problem:

ξ01
ξ02
1

2
64

3
755 1 0 t1

0 1 t2

0 0 1

2
64

3
75: ξ1

ξ2
1

2
64

3
75: (6)

A two-dimensional vector has unique Euclidean coordinates, ξ ¼ e1 e2½ �T
but it can be represented by an infinity of possible three-dimensional vectors

ξ ¼ h1 h2 h3½ �T where h1
2+h2

2+h3
2 6¼ 0 when using homogeneous coor-

dinates. Specifically, an important property of homogeneous coordinates is:

8λ � ℝ∗, ξ ¼ λ:ξ: (7)

It is used to come back to Euclidean coordinates and vice versa. Indeed, when

the last component in 1 in homogeneous coordinates, then other components

equal those in Euclidean coordinates. In the present example, provided h3 6¼ 0,

Fig. 2 Definition of the position within the reference subset ξ (A) from the points’ abso-
lute coordinates or (B) from their coordinates relative to the PC.
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it arises h1/h3¼ e1 and h2/h3¼ e2 since ξ ¼ 1=h3ð Þ:ξ ¼ h1=h3 h2=h3 1½ �T
according to Eq. (7).

Note that, homogeneous coordinates prescribe finite components for

any point, even those at infinity. Indeed, h3¼0 means the point is at infinity

in the direction h1 h2½ �T .

3.2 Linear homography, a common shape function
The displacement field on the scintillator is theoretically continuous

according to Eq. (2). It is thus possible to describe it with a parametric model.

The latter is most often based on polynomial relationships, whose increasing

order and number of parameters allows the description of more and more

complex relative deformations (Sutton, Orteu, & Schreier, 2009). This is

illustrated in Fig. 3 considering the most common shape functions in the lit-

erature (Brown, 1992; Sánchez, 2016; Zitová & Flusser, 2003). Quadratric

(second order) shape functions are also used sometimes (Pan et al., 2009).

The local HR-EBSD technique considers a 0-order shape function,

namely a translation (Fig. 3A). Affinity is largely used for surface displacement

and strain measurements in experimental mechanics (Fig. 3D). Regarding

Kikuchi patterns, it can account for rotations or elastic strains inducing a dis-

placement u lying in the scintillator plane (Eq. (1) and Fig. 1B). As shown in

fig. 9 in Chapter “Measuring elastic strains and orientation gradients by scan-

ning electron microscopy: Conventional and emerging methods” by

Ernould et al., only εii (i�⟦1,3⟧), ε12 and w21 (expressed in the detector’s

frame) are concerned. Additional deformation parameters are necessary to

describe out-of-plane effects observed with the other lattice rotation of elas-

tic strain components.

Fig. 3 Relative deformations associated with the most common shape functions in the
literature.
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Linear homography is a line but not angle preserving transform. It

involves eight deformation parameters hij stored in the deformation vector

p ¼ h11 h12 h13 h21 h22 h23 h31 h32½ �T , (8)

and commonly arranged in the shape function as follows (Baker&Matthews,

2004; Hartley & Zisserman, 2004):

W pð Þ ¼
1 + h11 h12 h13

h21 1 + h22 h23

h31 h32 1

2
64

3
75: (9)

The effect of each deformation parameters is illustrated in Fig. 4. At this

point, one’s notices these effects show strong similarities with the deformed

configurations materialized through red quadrilaterals in fig. 9 in Chapter

“Measuring elastic strains and orientation gradients by scanning electron

Fig. 4 Effect of each deformation parameter hij of a linear homography as parametrized
in Eq. (9).
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microscopy: Conventional and emerging methods” by Ernould et al. More

precisely, εi3 and wi3 looks like �h3i (i¼1, 2).

Injecting Eq. (9) into Eq. (4) with ξ ¼ ξ1 ξ2 1½ �T , and then dividing by

the third component, yields:

ξ01
ξ02
1

2
64

3
75 ¼

1 + h11ð Þ:ξ1 + h12:ξ2 + h13
h31:ξ1 + h32:ξ2 + 1

h21:ξ1 + 1 + h22ð Þ:ξ2 + h23
h31:ξ1 + h32:ξ2 + 1

1

2
666664

3
777775: (10)

The third components being 1, the two first components equal the Euclidean

coordinates. Eq. (10) can thus be compared with the HR-EBSD/TKD

problem, while keeping in mind that the method is insensitive to hydrostatic

dilatation. The components of Fe are therefore substituted by those of

F̂
e
(F̂

e

33 ¼ 1) in Eq. (3):

x01
x02

	 

¼

DD: F̂
e

11:x1 + F̂
e

12:x2 + DD
� �
F̂
e

31:x1 + F̂
e

32:x2 + DD

DD: F̂
e

21:x1 + F̂
e

22:x2 + DD
� �
F̂
e

31:x1 + F̂
e

32:x2 + DD

2
66664

3
77775: (11)

The homography in Eq. (10) is analogous to the HR-EBSD/TKD problem

in Eq. (11), where the third dimension is omitted since a two-dimensional

transformation in the scintillator plane is considered. The question is now to

know what link exists between the latter and the deformation parameters of

the homography.

Note that Eq. (10) assumes h31.ξ1 + h32.ξ2 + 1 6¼ 0, which means the

homography is not degenerated, i.e., the deformed region of interested is

not reduced to a straight line.

3.3 Equivalence with the HR-EBSD/TKD problem

3.3.1 Link between hij and F̂
e
ij

Since coordinates relative to the PC are considered in the HR-EBSD/TKD

problem (Eq. 11), x1 � x01 x2 � x02 1½ �T is chosen as a possible representa-

tion of ξ. By definition of the shape function, the parametrized homography

in Eq. (8) yields:
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ξ01
ξ02
ξ03

2
4

3
5¼ 1+ h11ð Þ:x1 + h12:x2 + h13� h11 + 1ð Þ:x01�h12:x02

h21:x1 + 1+ h22ð Þ:x2 + h23�h21:x01� 1+ h22ð Þ:x02
h31:x1 + h32:x2 + 1�h31:x01�h32:x02

2
4

3
5: (12)

Using the property in Eq. (7), the right side of Eq. (12) is multiplied byDD/

β where β¼1�h31.x01�h32.x02 before factoring by DD:

ξ01
ξ02
ξ03

2
4

3
5¼

DD:
1+ h11

β
:x1 +

h12

β
:x2 +

h13� 1+ h11ð Þ:x01�h12:x02
DD:β

:DD

� �

DD:
h21

β
:x1 +

1+ h22

β
:x2 +

h23�h21:x01� 1+ h22ð Þ:x02
DD:β

:DD

� �
DD:h31

β
:x1 +

DD:h32
β

:x2 +DD

2
666666664

3
777777775
:

(13)

All components are divided by the third on in Eq. (13), to get back to

Euclidean coordinates. In the same way ξ is defined in Fig. 2B, ξ0 ¼x0 �x0,

which gives:

x01�x01

x02�x02

	 

¼

DD:

1+ h11

β
:x1 +

h12

β
:x2 +

h13� 1+ h11ð Þ:x01�h12:x02
DD:β

:DD

� �
DD:h31

β
:x1 +

DD:h32
β

:x2 +DD

DD:

h21

β
:x1 +

1+ h22

β
:x2 +

h23�h21:x01� 1+ h22ð Þ:x02
DD:β

:DD

� �
DD:h31

β
:x1 +

DD:h32
β

:x2 +DD

2
666666666664

3
777777777775

(14)

All that remains is to isolate the xi
0 coordinates. Term-by-term identification

of the so-obtained expression with the HR-EBSD/TKD problem in

Eq. (11) leads to the following relationships:

F̂e¼ 1

β0

1 + h11 + h31:x01 h12 + h32:x01
h13�h11:x01� h12:x02 + x01: β0�1ð Þ

DD

h21 + h31:x02 1 + h22 + h32:x02
h23�h21:x01� h22:x02 + x02: β0�1ð Þ

DD

DD:h31 DD:h32 β0

2
666664

3
777775

(15)

where

β0 ¼ 1� h31:x01 � h32:x02:
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A linear homography thus perfectly describes the displacement field induced

on the scintillator by the elastic deformation gradient Fe. Knowing the pro-

jection geometry, i.e., (x01,x02, DD) and the deformation parameters of the

homography, the deviatoric deformation gradient F̂
e
is analytically deduced.

Conversely, the deformation parameters of the homography are derived

from Fe, after computing the F̂
e

ij ¼ Fe
ij=F

e
33 components

h11 h12 h13

h21 h22 h23

h31 h32 1

2
64

3
75 ¼ 1

γ0

γ11 DD:F̂
e

12 � F̂
e

32:x01 γ13
DD:F̂

e

21 � F̂
e

31:x02 γ22 γ23
F̂
e

31 F̂
e

32 1

2
64

3
75

(16)

where

γ0 ¼ DD + F̂31:x01 + F̂32:x02

γ11 ¼ DD:F̂
e

11 � F̂
e

31:x01 � γ0

γ22 ¼ DD:F̂
e

22 � F̂
e

32:x02 � γ0

γ13 ¼ DD: F̂
e

11 � 1
� �

:x01 + F̂
e

12:x02 + F̂
e

13:DD
� �

+ x01: DD� γ0ð Þ
γ23 ¼ DD: F̂

e

21:x01 + F̂
e

22 � 1
� �

:x02 + F̂
e

23:DD
� �

+ x02: DD� γ0ð Þ:

3.3.2 Accounting for probe displacements during scan
Unless stage scanning in conducted, like in Villert et al. (2009), the projec-

tion geometry of the target pattern differs from the reference one. Let

δPC ¼ δ1 δ2 δDD½ �T (in Euclidean coordinates) be the probe displacement

at the sample’s surface, as it moves from the reference to the target point,

while (x01,x02, DD) are the calibration parameters of the reference point.

The displacement of the PC causes a uniform translation of the target

pattern with respect to the reference one, i.e., xi
0 ¼xi+δi (i¼1, 2).

Obviously, ξi0 ¼ξi+δi so the shape function is

T ¼
1 0 δ1

0 1 δ2

0 0 1

2
64

3
75: (17)

A change in sample to detector distance is responsible for an isotropic scale

by a factor
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α ¼ DD� δDD

DD
, (18)

with respect to the PC, i.e., xi
0 ¼α.xi (i¼1, 2). Be aware this formula

depends on the adopted coordinates system. Here, X
!

3 is oriented toward

the screen, hence the minus sign in front of δDD. Indeed, an increase in

the sample to detector distance corresponds to a negative value of δDD,

but generates a magnification (α>1) of the Kikuchi patterns (see Chapter

“Measuring elastic strains and orientation gradients by scanning electron

microscopy: Conventional and emerging methods” by Ernould et al.). In

practice, the scale factor is obtained more simply by dividing the sample-

to-detector distance associated with the target by that associated with the

reference. The shape function associated to this scale is

S ¼
α 0 x01: α� 1ð Þ
0 α x02: α� 1ð Þ
0 0 1

2
64

3
75: (19)

This matrix is obtained by noticing that α.xi ¼ α.(xi�x0i)+α.x0i, hence
ξi
0 ¼α.ξi+x01.(α�1). The relative coordinates x0i are defined with respect

to the PC of the reference pattern, so isotropic scaling must be applied

before translation. Therefore, the transformation induced by probe dis-

placement T.S.

As shown in Fig. 4, scale and translation are captured by the deformation

parameters h11, h22 and h13, h23 of the homography, respectively. The con-

tribution of T.S must thus be removed from the homography measured

between the reference and the target patterns, before deducing F̂
e
. The

corrected homography

W p̂ð Þ ¼ T :Sð Þ�1:W pð Þ (20)

is computed by considering the inverse transformation

T :Sð Þ21 ¼

1

α
0 � δ1 + x01: α� 1ð Þ

α

0
1

α
� δ2 + x02: α� 1ð Þ

α
0 0 1

2
6664

3
7775: (21)

By expanding Eq. (20), the corrected deformation parameters ĥij are obtained

as follows:

13Development of a homography-based global DIC approach
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ĥ11 ĥ12 ĥ13
ĥ21 ĥ22 ĥ23
ĥ31 ĥ32 1

2
4

3
5¼

h11 + 1� γ1:h31
α

�1
h12� γ1:h32

α

h13� γ1
α

h21� γ2:h31
α

h22 + 1� γ2:h32
α

�1
h23� γ2

α
h31 h32 1

2
66664

3
77775,
(22)

where γi¼δi+x0i.(α�1) with i¼1, 2. Finally, F̂e
is analytically deduced

using in Eq. (15), in which the ĥij parameters are considered.

3.3.3 Consequence for the DIC measurement
A linear homography is perfectly suitable for the HR-EBSD/TKD tech-

nique. It is mathematically equivalent to the model describing the displace-

ment field between two patterns, including effects induced by probe

displacement. The deviatoric deformation gradient tensor F̂
e
is analytically

deduced from the measure homography, of deformation vector p, knowing

the projection geometry of the reference and target patterns.

Consequently, only one region of interest is needed for the registration

of the target pattern with respect to the reference pattern. Its size does not

affect the ability of the homography to faithfully describe the displacement

field. The subset must thus be chosen as large as possible to maximize mea-

surement accuracy (Pan, 2018; Pan et al., 2009; Zitová & Flusser, 2003).

Ideally it encompasses the whole pattern, but the edges of the patterns

may be excluded in practice, as the signal is usually noisy there. As a con-

clusion, the proposed method is a homography-based global DIC approach.

4. Optimization strategy by means of an IC-GN
algorithm

It is now necessary to determine, among all possible homographies,

the one that ensures an optimal registration of the reference image with

the target. This implies to define a similarity criterion and to have a strategy

to optimize it.

4.1 Optimization by means of a steepest gradient
descent method

Regarding area-based methods, an exhaustive exploration of the set of pos-

sible solutions is the only way to determine with certainty the optimal trans-

formation between the images to be registered (Zitová & Flusser, 2003).
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Such an approach is typically used for translation measurement, like the local

HR-EBSD/TKD technique does. However, it is unsuitable for measuring

relative deformations, as the numerical cost increases considerably (Pan et al.,

2009; Zitová & Flusser, 2003).

The measurement of relative deformations with subpixel accuracy clas-

sically employs iterative gradient descent algorithms. They minimize the

residuals, i.e., the sum of squared differences (SSD) of the intensities between

the reference and the target subsets. This sum is the similarity criterionwhose

steepest direction (gradient) is calculated iteratively. For this purpose,

numerical optimization methods like Newton-Raphson, Gauss-Newton

or Levenberg-Marquardt are used. Since these algorithms converge towards

a local minimum, they required a sufficiently accurate initial estimation of

the solution so that this minimum is the global minimum of the similarity

criterion. The initial guess also affects convergence speed (Pan, 2018; Pan

et al., 2009).

Stochastic methods, represented in particular by genetic algorithms,

offer better robustness against local optima (Pan, 2018; Pan et al., 2009).

However, their use for measuring surface displacements and deformations

is relatively recent. The classical steepest gradient descent methods are

retained since they are widely used and their implementation benefits from

a detailed literature.

4.2 Choice of the inverse-compositional Gauss-New algorithm
4.2.1 Common algorithms
Themost common gradient descent algorithms are (Pan, 2018): the forward-

additiveNewton-Raphson (FA-NR) algorithmproposed byBruck,McNeill,

Sutton, and Peters (1989), the forward-additive Gauss-Newton (FA-GN)

algorithm and the inverse-compositional Gauss-Newton (IC-GN) algorithm

proposed by Baker and Matthews (2001).

All of them implement the Lucas-Kanade method (Lucas & Kanade,

1981), proposed in 1981 for measuring the optical flow, i.e., the apparent

displacement field between two images. Starting with an initial guess p0,

these algorithms iteratively minimize the similarity criterion with respect

to the increment of deformation parameters Δp. As their name imply, they

differ in the numerical optimization scheme employed as well as the way the

current estimate of the solution is updated, which will be detailed in the next

section.

The Gauss-Newton algorithm is a modification of the Newton-

Raphson method with simplifying assumptions decreasing its numerical cost
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without altering its accuracy. The FA-NR algorithm is therefore ignored as

it is 3–5 times slower than the IC-GN algorithm (Pan, Li, & Tong, 2013)

while also being less robust to noise (Shao, Dai, & He, 2015). It remains to

choose between the FA-GN and IC-GN algorithms. While they have sim-

ilar accuracy and convergence speed, especially in the case of a linear hom-

ography (Baker & Matthews, 2004), the update procedure impacts their

respective numerical cost.

4.2.2 Advantage of the inverse-compositional approach
In its original form, the Lukas-Kanade method minimizes the following

similarity criterion (Lucas & Kanade, 1981; Pan, 2018):

CFA
SSD Δpð Þ ¼

XN

i¼1 T W X ið Þ, p + Δp
� �� �

� R X ið Þ
� �h i2

: (23)

It is the sum of squared differences of the intensities of the undeformed ref-

erence subset R, and the target T subset deformed according toW(p+Δp).
N is the number of points of location X forming the subset.

As shown in Fig. 5, the reference subset remains undeformed during the

algorithm, whereas the target subset is deformed according to the current

solution estimate pn at the beginning of each iteration. The increment of

deformation Δp to be applied to it in order to minimize the similarity cri-

terion defined in Eq. (23) is calculated. The deformation parameters are then

updated for the next iteration using a forward-additive scheme:

p p + Δp: (24)

Fig. 5 Working principle of the forward-additive scheme.
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In order to approximate the increment Δp, the shape function W must be

differentiable with respect to p. Indeed, the Lucas-Kanade algorithm linear-

izes the function T by taking its Taylor series expansion to order 1 in the

neighborhood of pn, Δp being assumed small:

T W X ið Þ, pn + Δp
� �� �

� T W X ið Þ, pn

� �� �
+ —T W X ið Þ, pn

� �� �h iT
:
∂W

∂p
ξ ið Þ, pn
� �

:Δp

(25)

where —T are the intensity gradients of the target image and ∂W
∂p

is the

Jacobian of the shape function. These two quantities must be recalculated

at each iteration according to the new estimate of the solution.

The inverse compositional approach is an improved version of the

Lucas-Kanade method proposed by Baker and Matthews (2001). It reverses

the role of the reference and the target subsets in the definition of the sim-

ilarity criterion:

CIC
SSD Δpð Þ ¼

XN

i¼1 R W X ið Þ, Δp
� �� �

� T W X ið Þ, p
� �� �h i2

: (26)

As shown in Fig. 6, it is now the reference subset which is allowed to

deform. Like previously, the target subset is deformed according to the cur-

rent solution estimate pn at the beginning of each iteration but remains fixed

during one iteration. In the inverse compositional approach, the reference

subset is not deformed at the beginning of each iteration. To do so, the

incremental Δp it must undergo is inverted and composed with the

transformation already applied to the target:

Fig. 6 Working principle of the inverse-compositional scheme.
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W pð Þ  W pð Þ∘W�1 Δpð Þ: (27)

This inversion is highlighted by the orange circular arrows in Fig. 6. Instead

of rotating the reference subset clockwise at the beginning of the next iter-

ation, the target subset is updated here by undergoing a counterclockwise

rotation.

The reference subset being undeformed at the beginning of each itera-

tion, the development in Taylor series at order 1 is realized in the neighbor-

hood of p¼0:

R W X ið Þ, Δp
� �� �

� R X ið Þ
� �

+ —R X ið Þ
� �h iT

:
∂W

∂p
ξ ið Þ, 0
� �

:Δp (28)

where —R is the intensity gradients of the reference image and noticing that

W(X(i ),0)¼X(i ). Unlike the forward-additive approach, the intensity gra-

dients of the reference and the Jacobian of the shape function do not depend

on the current evaluation of the solution in the inverse-compositional

approach. They are no longer recalculated at each iteration according to

the new estimate of the solution, but pre-computed considering p¼0.

In the Lucas-Kanade algorithm, the approximation in Eq. (28) is injected

into the definition of the CSSD
IC similarity criterion in Eq. (26). Since the

increment Δp minimizes the criterion, the first derivative of CSSD
IC with

respect to Δp cancels, i.e.,

dCIC
SSD

dΔp Δpð Þ ¼ 0, (29)

which yields:

2
XN
i¼1

—R:
∂W

∂p

	 
T
: R X ið Þ
� �

+ —R:
∂W

∂p

	 

:Δp �T W X ið Þ, p

� �� �	 
 !
¼ 0 (30)

where —R: ∂W
∂p

h i
denotes —R X ið Þ� �� �T

: ∂W
∂p

ξ ið Þ, 0
� �

to simplify notations.

Eq. (30) is rearranged by taking out Δp from the summation:

XN
i¼1

—R: ∂W
∂p

	 
T
: —R: ∂W

∂p

	 
 !
:

Δp ¼ � —R: ∂W
∂p

	 

R X ið Þ
� �

� T W X ið Þ, p
� �� �h i

,

(31)
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thus, making the Hessian matrix appear:

H |p¼0 ¼
XN
i¼1

—R: ∂W
∂p

	 
T
: —R: ∂W

∂p

	 
 !
: (32)

Its calculation is the most numerically expensive step of the Gauss-Newton

algorithm (Baker & Matthews, 2004). Being evaluated in p¼0, it remains

constant during the execution of the IC-GN algorithm, which is not the

case for the FA-GN algorithm. Because of its superior numerical efficiency,

the IC-GN algorithm is selected, as recommended by Pan (2018). In the

framework of the HR-EBSD/TKD technique, the Hessian matrix will only

need to be computed at each change of the reference image, i.e., only once

per grain.

4.2.3 Zero-mean normalized correlation criterion (ZNCC)
As defined in Eq. (26), the CSSD

IC criterion is sensitive to any variation in

intensity between the reference and the target images. Its zero normalized

version, denoted asCZNSSD
IC (ZNSSD: zero-mean normalized sumof squared

differences), will be considered:

CIC
ZNSSD Δpð Þ ¼

XN
i¼1

R W X ið Þ,Δp
� �� �� r

Δ~r � T W X ið Þ,p0
� �� �� t

Δ~t

" #2
(33)

r ¼ 1
N

PN
i¼1

R W X ið Þ,Δp
� �� �

Δ~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

R W X ið Þ,Δp
� �� �� r

� �2s

t ¼ 1
N

PN
i¼1

T W X ið Þ, p0
� �� �

Δ~t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

T W X ið Þp0
� �� �� �t

� �2s
:

Indeed, it is insensitive to an affine variation in illumination between the

two images, while providing better robustness against noise (Zitová &

Flusser, 2003). Note that Kikuchi patterns will also be filtered before analysis

in order to reduce noise and to subtract the continuous background resulting

from inelastic electron scattering.

5. Discussion

Starting from literature reviews of digital image registration methods

(Pan, 2018; Pan et al., 2009; Zitová & Flusser, 2003), an alternative
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HR-EBSD/TKD technique following most of their recommendations

emerged. First, it is a global area-based approach. As illustrated in Fig. 7,

electron diffraction patterns are analyzed as a whole, through a single large

region of interest. To do so, the reference and target subsets are allowed to

deform relatively according to a linear homography. This is a common shape

function, often used in computer vision to model projective transformation. It

involves eight deformation parameters. They are measured iteratively in the

spatial domainwith a subpixel resolution bymeans of an inverse-compositional

Gauss-Newton algorithm (IC-GN). The latter minimizes the zero-mean nor-

malized sum of squared differences in intensity of the subset, which is a simi-

larity criterion robust to noise and insensitive to affine intensity variations.

This new approach is made possible because the displacement field des-

cribed by a linear homography is mathematically equivalent to that sought in

Fig. 7 Summary of the principle of the proposed global HR-EBSD/TKD technique.
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the HR-EBSD/TKD technique at the scintillator’s scale. Knowing the pro-

jection geometry, the deviatoric deformation gradient tensor F̂
e
is analytically

deduced from the measured deformation parameters hij of the homography.

As summarized in Fig. 7, these are first corrected using Eq. (22) to compensate

the translation and isotropic scales caused by probe displacement during the

scan. Then, the solution is calculated according to Eq. (15).

Using an iterative Newton algorithm whose principle is relatively similar

to the IC-GN algorithm, Hild and Roux (2012) demonstrated the superi-

ority of global approaches over local ones in the case of a bilinear shape func-

tion. While global DIC is the strength of the proposed method, its

implementation by an IC-GN algorithm nevertheless makes it sensitive

to local minima. The IC-GN algorithm is indeed a local optimization

scheme based on steepest gradient descent. It requires an suitable initial guess

of the solution to convergence efficiently towards the global minimum of

the similarity criterion. However, this algorithm is still widely used and ben-

efits from constant improvements. It also presents a numerical efficiency

superior to the other usual algorithms in its category, hence its choice.

This choice is supported by recent publications. Indeed, global

HR-EBSD/TKD techniques, all based on a Gauss-Newton algorithm, were

proposed in parallel to this thesis (Ruggles, Bomarito, Qiu, & Hochhalter,

2018; Shi, Roux, Latourte, & Hild, 2019; Vermeij & Hoefnagels, 2018).

More precisely, Ruggles et al. (2018) also selected an IC-GN algorithm.

However, stochastic methods, more robust to local optima, are likely to

develop in the coming years. This statement is supported by the recent used

of a differential evolution algorithm to determine the projection geometry

(Tanaka & Wilkinson, 2019).

As detailed in Chapter “Measuring elastic strains and orientation gradi-

ents by scanning electron microscopy: Conventional and emerging

methods” by Ernould et al., the other global HR-EBSD/TKD approaches

are integrated DIC methods. They directly measure the components of the

(deviatoric) deformation gradient tensor instead of the deformation param-

eters of the homography. Beyond its originality, the present method is at

some point advantageous:

i. Image registration by the IC-GN algorithm is performed independently

of any consideration of projection geometry. The locations ξ and ξ0 of
the points forming the reference and the target subsets, respectively, are

computed from absolute coordinates in the image (Fig. 2A), as will be

explained in Chapter “Implementing the homography-based global

HR-EBSD/TKD approach” by Ernould et al. The uncertainty in

projection geometry is not propagated at each iteration of the
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IC-GN algorithm, where updating the deformed target subset is sim-

ilar to the (iterative) remapping technique of the local HR-EBSD/

TKD approach (Britton & Wilkinson, 2012). It only affects the ana-

lytical deduction of the solution from the measured homography, not

the image registration itself.

ii. The numerical cost of an iteration of the IC-GN algorithm is reduced

because the deformed coordinates are computed in a relatively straight-

forward way following Eq. (10), whereas Eq. (11) is used by Shi et al.

(2019), and a more complex version incorporating probe displacement

is considered by Vermeij & Hoefnagels (2018) and Ruggles et al.

(2018). Considering a linear homography, effects of probe displacement

are simply corrected using Eq. (22), which is much less computationally

demanding than pre-processing all patterns, as Shi et al. (2019) did.

Nonetheless, it must be recognized that a pre-processing step remains

unavoidable and that it can combine several purposes. Shi et al. (2019)

also corrected optical distortions for instance.

iii. Because image registration is independent from any concerns regarding

the projection geometry, the solution can be recomputed quasi-

instantaneously in case of change of the projection parameters.

This said, an integrated DIC approach is also justified. It eases the under-

standing of the algorithms, since implemented formulas correspond to the

HR-EBSD/TKD model. This becomes particularly interesting in the work

by Vermeij, De Graef, and Hoefnagels (2019), in which absolute elastic

strains are measured from a set of diffraction patterns all associated with unre-

laxed stress states. In their work, more than two patterns are considered at

once. Several subsets are co-correlated, and the similarity criterion is then

the sum of the similarity criteria associated to each pair of patterns to be cor-

related. Each pattern has its own Euler angles and projection geometry. The

authors turn these into degrees of freedom of the problem, which are added

to the rotations and elastic strains. Decoupling of the image registration and

the different projection geometries using a set of homographies seems

cumbersome.

6. Summary

• A global digital image correlation approach is proposed (Ernould et al.,

2020a). Kikuchi patterns are registered as a whole, considering a unique

and large region of interest, whose relative deformations are modeled by

a linear homography.
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• A linear homography is a first-order projective transformation. It exactly

describes the theoretical displacement field in the scintillator, induced by

the elastic deformation gradient tensor (Villert et al., 2009; Wilkinson

et al., 2006b) as well as the effects of probe displacement.

• Eight deformation parameters hij define the linear homography (Baker &

Matthews, 2004; Hartley & Zisserman, 2004). They are measured with a

subpixel resolution in the spatial domain by means of an iterative

inverse-compositional Gauss-Newton (IC-GN) algorithm (Baker &

Matthews, 2001). Because of its numerical efficiency, this algorithm is

widely used in the literature, in particular in experimental mechanics

(Pan, 2018).

• The proposed method decouples image registration from calibration

uncertainty. The homography between the reference and the target pat-

terns is measured by DIC, and the projection geometry is only consid-

ered afterwards to analytically deduce the deviatoric deformation

gradient tensor F̂
e
. The contribution of probe displacement effects is first

removed from the measured homography using Eq. (22), and the

corrected deformation parameters ĥij are then injected in Eq. (15) to cal-

culate the F̂
e

ij components

• The similarity criterion is the zero-mean normalized sum of squared dif-

ferences in the intensities of the reference and target subsets (Eq. (33)). It

is insensitive to affine illumination change in the images and improves

the noise robustness of the IC-GN algorithm.

• The implementation of the method is detailed in the next chapter, which

also deals with the initial guess strategy. The IC-GN algorithm con-

verges to a local optimum. It thus requires a sufficiently accurate initial

guess of the solution to converge efficiently to the global optimum of the

similarity criterion.
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