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1. Introduction

1.1 Context
For reminder, the present work was conducted as part of the first author’s

PhD thesis at the University of Lorraine from 2017 to 2020 (Ernould,

2020). It deals with the development of a high-angular resolution method

for the measurement lattice rotations and elastic strains in the scanning elec-

tron microscope (Ernould, Beausir, Fundenberger, Taupin, & Bouzy, 2020a,

2020b, 2021). This kind of technique is known as the HR-EBSD or, more

recently, the HR-TKD technique, depending on whether it is applied to

electron backscatter diffraction (EBSD) patterns or transmission Kikuchi dif-

fraction (TKD) patterns. In the following, “HR-EBSD/TKD” will be

employed when no distinction is needed regarding the SEM-based

configuration used.

Lattice rotations and elastic strains are deduced from the displacement

field between two Kikuchi patterns belonging to the same crystal, as detailed

in Chapter “Measuring elastic strains and orientation gradients by scanning

electron microscopy: Conventional and emerging methods” by Ernould

et al. In pioneering works by (Wilkinson, Meaden, & Dingley, 2006a;

Wilkinson, Meaden, & Dingley, 2006b), the displacement field is deter-

mined from local translation measurements from small square subsets and

an overdetermined and weighted system of equations is then iteratively

solved (Britton &Wilkinson, 2011). More recently, global approaches, i.e.,

considering a unique and large subset, were developed (Ruggles, Bomarito,

Qiu, & Hochhalter, 2018; Shi, Roux, Latourte, & Hild, 2019; Vermeij &

Hoefnagels, 2018).

The present approach belongs to this second type.Chapter “Development

of a homography-based global DIC approach for high-angular resolution in

the SEM” by Ernould et al. demonstrated the displacement field in the scin-

tillator sought by the HR-EBSD/TKD technique is mathematically equiv-

alent to a linear homography. Knowing the SEM projection geometry and

its variations across the orientation map, lattice rotations and elastic strains

can be deduced from the homography. Its measurement is relying on

established digital image correlation (DIC) techniques in the field of exper-

imental mechanics, which were here transferred to electron diffraction pat-

terns. More specifically, patterns are pre-aligned by means of global image

cross-correlation techniques and the eight deformation parameters of the

homography are then measured with subpixel accuracy by means of an

inverse-compositional Gauss-Newton (IC-GN) algorithm.
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The implementation of the method is extensively described in Chapter

“Implementing the homography-based global HR-EBSD/TKD approach”

by Ernould et al., in particular the working principle of a correction of

optical distortions integrated in the IC-GN algorithm. It enables the hom-

ography to be measured directly from optically distorted patterns, reducing

the numerical cost of the whole analysis. Considering the current state of the

code, the extra cost of the correction appeared negligible as compared to the

pattern pre-processing step conducted until present to remove the effects of

optical distortions. This is related to the runtime required to compute the

interpolation coefficients of the original (distorted) image. The question

now is whether the proposed correction is truly effective and under what

circumstances it is necessary. More generally, the correct implementation

of the method must be verified and some aspects like the convergence

criterion of the IC-GN algorithm also need to be clarified.

1.2 Content of the chapter
This chapter proposes a numerical validation of the homography-based

global HR-EBSD/TKD approach. Angular disorientation in the range 0

to 14° as well as equivalent elastic strains up to 5�10�2 are considered.

They cover the conditions with which the technique is usually confronted

in practice. Beyond the validation of the method itself, aim is also to quantify

the effects of optical distortion.

First, test conditions are presented. Test images are not the result of indi-

vidual simulations but generated by interpolating a dynamically simulated

electron diffraction pattern. This procedure allows many cases to be inves-

tigated, but there are other motivations that will be discussed.

In a second step, the homography-based global approach is validated

in the absence of optical distortions, and then using the correction when

the images are subjected to first-order radial distortion. The performance

of the global cross-correlation based pattern pre-alignment technique is

evaluated in terms of angular accuracy as well as its consequences regard-

ing the convergence speed of the IC-GN algorithm. The influence of the

convergence criterion or of a median or Gaussian spatial filter is also

studied.

In a third step, the error induced by neglecting a first-order radial distor-

tion is quantified, demonstrating the necessity of a correction. This calls into

question some common ideas in the literature of the HR-EBSD/TKD tech-

nique. Finally, the accuracy on the parameters of the distortion model to

ensure the effectiveness of the correction is evaluated.
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1.3 Reminder of notations and formula

Let X1
�!

, X2
�!

, X3
�!� �

be the scintillator’s frame, whose axes X1
�!

and X2
�!

are

aligned with the scintillator’s horizontal and vertical edges, respectively. X1
�!

is rightwards and X2
�!

is downwards to be consistent with the usual matrix

representation of images. For the sake of clarity, points belonging to the

scintillator are denoted in two ways:

– Uppercase letters, X¼ [X1 X2]
T, mean that absolute (or pixel) coordi-

nates are considered. The origin is the upper left corner of the scintillator.

– Lowercase letters, x¼ x1 x2½ �T , mean that relative coordinates with

respect to pattern center (PC) are considered. The latter admits

XPC ¼ XPC
1 XPC

2

� �T
as absolute coordinates, i.e., xi¼Xi�Xi

PC

(i¼1, 2).

By default, coordinates in the optically undistorted configuration are con-

sidered since it is the one in which the linear homography assumption is

valid. The transition from the undistorted configuration (taking place in

the scintillator) and the distorted one (recorded by the camera sensor) is

described by the distortion model D, which depends on each camera:

eX ¼ D Xð Þ, (1)

the position in the optically distorted images being highlighted by a tilde.

Note that the optical center is invariant by the distortion model, so it is

uniquely denoted as Xopt ¼ X
opt
1 X

opt
2

� �T
in this chapter.

Regarding the linear homography measured by the IC-GN algorithm,

its deformation parameters hij are stored in the deformation vector

p ¼ h11 h12 h13 h21 h22 h23 h31 h32½ �T , (2)

and arranged in the shape functionW as follows (Baker & Matthews, 2004;

Hartley & Zisserman, 2004):

W pð Þ¼
1+ h11 h12 h13
h21 1 + h22 h23
h31 h32 1

24 35: (3)

Similarly, Δhij denote the parameters of the increment deformation vector

Δp, which is computed at each iteration of the IC-GN algorithm. The con-

vergence criterion Cconv is fulfilled when the norm
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Δpj jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ξ1 max :Δhi1ð Þ2 + ξ2 max :Δhi2ð Þ2� 	
+ Δh213 + Δh223

vuut (4)

is lower or equal than a threshold. The latter was set to 0.001 pixel according

to the literature (Pan, Li, & Tong, 2013; Shao, Dai, & He, 2015; Zhang

et al., 2015) in Chapter “Implementing the homography-based global

HR-EBSD/TKD approach” by Ernould et al. In Eq. (4), ξ1max¼max jξ1(i )j
and ξ2max¼max jξ2(i )j where ξk(i )¼Xk�X0k (k¼1.2) are the coordinates of

the i-th point forming the subset (i�⟦1,N⟧) relative to the arbitrary point

X0 ¼ X01 X02½ �T . In practice, the subset’s geometric center is considered.

2. Generation of the test datasets

This section describes the generation process of the test images as well

as the cases studied. As test images are not the result of individual dynamic

pattern simulations, motivations for this choice are detailed.

2.1 Patterns generated by warping a dynamically simulated
master pattern

2.1.1 Overview of the procedure
Amaster pattern of unstrained aluminum at 20keV is dynamically simulated

using the compiled version of EMSoft 4.2 software (Singh, Ram, & Graef,

2017). Table 1 summarizes the simulation parameters. This master pattern

accounts for the entire Kikuchi sphere. Actually, it was already displayed

in fig. 7 in Chapter “Measuring elastic strains and orientation gradients by

scanning electron microscopy: Conventional and emerging methods” by

Ernould et al.

A diffraction pattern of arbitrary orientation (75°, 125°, 15°) and of size

2400�2400-pixels with a pixel size of 20μm is then extracted from themas-

ter pattern. It is denoted as “source image” and it is showed in the bottom

right of Fig. 1. Test images of size 1200�1200-pixel with same pixel size are

then extracted by interpolating this “source image.” This is outlined by the

light-blue line in Fig. 1, while the reference pattern corresponds to the cen-

tral region delimited by a white dash-line. The pixel size and resolution of

the test pattern are chosen according to the maximum resolution of the

Bruker e-Flash HR+ camera used during this work.

Regarding the projection geometry, a typical EBSD configurationwith a

sample-to-detector distance DD of 16mm is assumed, as schematized in the
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top of Fig. 1. Red arrows show the steps involved in the computation of a

target pattern. Starting from one of its pixels, the antecedent position to

interpolate in the source image must be determined. This requires inversing

the optical distortion effects as well as those of the transformation Fe and the

probe displacement δPC at the sample surface.

Table 1 Parameters of the dynamical pattern simulation in EMsoft 4.2.
Material

Material Aluminum

Structure FCC

Lattice parameter 0.4nm

Debye-Waller factor 0.004nm2

Monte Carlo simulation

Total number of incident electrons 2�109

Specimen tilt angle 70°

Incident beam energy 20keV

Minimum backscatter electron exit energy 15keV

Energy bin size 1keV

Maximum exit depth 100nm

Depth step size 1nm

Master pattern simulation

Smallest D-spacing 0.05nm

Master pattern size 1000 (2001�2001)

Bethe parameters 4 / 8 / 50

Pattern simulation parameters

Camera elevation 0° Energy range (min) 20keV

Euler angles (75°, 125°, 15°) Energy range (max) 20keV

Detector size 2400�2400 Include background No

Detector pixel size 20μm Include Poisson noise No

Sample-to-detector distance 16mm Gamma 0.33

Pattern center location 0, 0 (centered) Bit depth 16-bit
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2.1.2 Inverting optical distortions
First, the antecedent X0 in the undistorted configuration (i.e., in the scintil-

lator) of a point eX0
in the distorted configuration (i.e., in the pattern recorded

by the camera) is determined from the inverse distortion model D�1. In

practice, the user can use potentially complex models D as a correction,

and knowing their inverse is not necessary. Inverting optical distortions is

commonly accompanied by nonlinearity problems. Therefore, the numer-

ical validation is here limited to a quite simple model, namely first-order

radial distortion:

D :
eX1eX2

 !
¼ X1

X2


 �
+ K1:r

2
� 	

:
Δ1

Δ2


 �
, (5)

where Δi¼Xi�Xi
opt (i¼1, 2) and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 + Δ2
2

q
.

This model is chosen as it admits an exact inverse, which is a 9th order

radial distortion (Drap & Lefèvre, 2016):

Fig. 1 Sketch of the HR-EBSD geometry. The patterns of size 1200�1200 are con-
structed by interpolating a simulated pattern of unstrained aluminum of size
2400�2400 (called "source image").
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D�1 :
X1

X2


 �
¼ eX1eX2

 !
+
X9
i¼1

bi:r
2i:

Δ1

Δ2


 �
(6)

where Δi ¼ eXi � X
opt
i (i¼1, 2). The nine distortion coefficients bi are ana-

lytically deduced from K1 in Eq. (5) as follows:

b1 ¼ �K1

b2 ¼ 3:K2
1

b3 ¼ �12:K3
1

b4 ¼ 55:K4
1

b5 ¼ �273:K5
1

b6 ¼ 1428:K6
1

b7 ¼ �7752:K7
1

b8 ¼ 43263:K8
1

b9 ¼ �246675:K9
1

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

: (7)

Note that formula inverting radial distortion up to the fourth order are given

in the reference.

Here, radial distortion is limited to the first-order for two reasons. On the

one hand, it has a predominant effect while the third-order or higher terms

are generally negligible (Wang, Shi, Zhang, & Liu, 2008). This model is thus

commonly used, including by (Britton et al., 2010) and (Mingard, Day,

Maurice, & Quested, 2011) as far as the HR-EBSD/TKD technique is con-

cerned. One the other hand, numerical instability issues worsen with

increasing distortion order, as pointed out by (Drap & Lefèvre, 2016). In

the present study, the inversion of a first-order radial distortion already

involves the multiplication of very large numbers (r18�1052) with very small

ones (K1
9�10�63).

2.1.3 Inverting the transformation
The position X0 in the scintillator being identified, the second step (red

arrow in Fig. 1) is the computation of its antecedent X in the scintillator

by Fe and the effects of the probe displacement δPC.
Positions relative to the PCmust be considered, namely x0 ¼X0 �XPC in

the target pattern and its matching point x¼X�XPC in the reference pat-

tern. For a fixed geometry (δPC¼0), the antecedent x is computed from its
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image x0 by Fe as follows (see section 3.1 in Chapter “Measuring elastic

strains and orientation gradients by scanning electron microscopy:

Conventional and emerging methods” by Ernould et al.):

x ¼ DD

Fe�1
:x0

� 	
:X3
�! Fe�1

:x0
� �

: (8)

Otherwise, x0 must be substituted by bx0 ¼ x0 � δPC in Eq. (8), as shown by

green arrows in Fig. 1.

All that remains is to deduce the position to interpolate in the source

image. This only requires adding an offset of 600 pixels to the absolute coor-

dinatesX¼x+XPC as the reference pattern in centered in the source image.

In the absence of any specific mention, interpolation is performed using the

biquintic B-splines coefficients, like the IC-GN algorithm does during

image registration.

2.2 Motivations
The test patterns are not the result of individual simulations, but they are

regions extracted from a dynamically simulated pattern. There are several

reasons for this choice.

First, this approach allows pattern generation and registration to be per-

formed using the same interpolation scheme. The interpolation bias is then

greatly reduced but not completely eliminated (Bornert et al., 2017). On the

one hand, the effect of the interpolation bias could be visualized by occa-

sionally generating patterns by bicubic interpolation of the source image.

On the other hand, the reduction of the interpolation bias and the absence

of possible errors or approximations intrinsic to the simulation make it pos-

sible to better isolate optical distortion effects. This second point is partic-

ularly important when estimating the required accuracy of the distortion

model parameters.

Second, the present approach is supported by previous studies of the

accuracy the HR-EBSD/TKD technique. Experimental or dynamically

simulated patterns are necessary to prove the validity of the mechanical

model describing the expected displacement field on the scintillator.

Indeed, the latter does not consider some diffraction phenomena such as

the variation of band contrast with orientation or the change in bandwidth

under the effect of elastic strains.

The influence of band contrast was legitimately raised by (Maurice,

Driver, & Fortunier, 2012), as they proposed the remapping technique.
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The authors did not observe an increase in error when applying the local

HR-EBSD/TKD approach to dynamically simulated patterns disoriented

up to 15°. The same trend was reported by (Vermeij & Hoefnagels, 2018)

using a global HR-EBSD/TKD approach. Dynamically simulated patterns

involving disorientation up to 12°were considered, as well as equivalent elas-
tic strains of 5�10�4, 2�10�3, and 1�10�2. According to the authors, the

variations in bandwidth do not call into question the validity of the mechan-

ical model, even when elastic strains are of the order of 1%. Although they

noticed the error worsens with equivalent elastic strain, it was �2�10�5

at most, i.e., well below the 1�10�4 accuracy commonly attributed to the

HR-EBSD/TKD technique under ideal experimental conditions.

More generally, none of the many studies conducted over the past 15years

using experimental patterns (McLean & Osborn, 2018; Plancher, 2015;

Plancher et al., 2016; Shi et al., 2019; Villert, Maurice, Wyon, & Fortunier,

2009; Wilkinson et al., 2006a; Yu, Liu, Karamched, Wilkinson, &

Hofmann, 2019) or simulated patterns (Britton et al., 2010; Britton &

Wilkinson, 2011, 2012; Maurice et al., 2012; Ruggles et al., 2018;

Vermeij &Hoefnagels, 2018) have questioned the relevance of themechanical

model (Villert et al., 2009; Wilkinson et al., 2006b).

Since the diffraction effects omitted in the present test images are second

order, this chapter proposes a numerical validation of the method by show-

ing that it is able to correctly determine a displacement field described by the

mechanical model sought by the HR-EBSD/TKD technique. The test

images are nevertheless extracted from a dynamically simulated pattern, so

that they are representative of the intended application in terms of intensity

distribution and gradients. Moreover, their generation being much less

numerically expensive than individual simulations, hundreds of cases can

be investigate.

2.3 Investigated cases
Unless otherwise stated, the pattern center of the reference pattern admits is

XPC ¼ 625400½ �T and the sample-to-detector distance is 16mm. This is typ-

ical of EBSD patterns. The projection geometry of target patterns differs by

δPC ¼ 5� 3� 1:0919½ �T pixels from that of the reference, corresponding to

a probe displacement of about 115μmat the sample’s surface associatedwith an

increase in sample-to-detector distance by 21.838μm (1.0919�20μm/pixel).

Indeed, a negative variation along X3
�!

pointing toward the scintillator means

the probe gets further from it. Note that such a probe displacement is quite
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large for HR-EBSD mappings but not unlikely. Aim is, among others, to

ensure the IC-GN algorithm correctly captures the isotropic scale of the pat-

tern induced by the variation in sample-to-detector distance, which is ignored

by the proposed pattern pre-alignment method.

Elastic strain states representative of small levels in metals (<2�10�3) as

well as larger ones in semiconductors (of the order of 10�2) are considered,

all in the presence of disorientations up to 14°. This value is typical of

intra-granular disorientations in plastically deformed polycrystals, whose

grains are usually detected from local orientations by setting a tolerance angle

of 5 or 15° between adjacent pixels of the map.

In total, a dataset consists in 1416 test conditions, which are divided into

two groups. For the first one, the disorientation angle Δθ varies from 0.1 to

14°. As detailed in Table 2, there are 118 cases: 58 for which disorientation is
equally distributed on the three axes and 60 cases for which a single axis

carries the rotation (20 cases per axis and the applied disorientations are

in bold in the table). The sign of each rotation is random. These 118 cases

Table 2 Overview of the test cases with a disorientation angle ranging from 0.1 to 14°.
118558+3×20 cases with varying disorientation angle Δθ

58 cases 20 cases* 20 cases* 20 cases*

w1,2,3 ¼ �Δθ=
ffiffiffi
3

p
w1¼ �Δθ, w2, 3¼0 w2¼ �Δθ, w1, 3¼0 w3¼ �Δθ, w1, 2¼0

*Corresponding to values in bold hereafter

where Δθ� [0.1°, 14°]

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.22 0.24

0.26 0.28 0.30 0.33 0.37 0.40 0.45 0.50 0.60 0.70 0.80 0.90 1.0 1.1 1.2

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4 2.6 2.8 3.0 3.3 3.7

4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0 10.3 10.7 11.0 11.5 12.0 13.0 14.0

6 strain states with varying von Mises equivalent elastic strain εvm

εvm Unstrained �5×1024 �2×1023 �5×1023 �1×1022 �2×1022

ε11 [10
�4] 0 1.7 �10 �11 50 83

ε12 [10
�4] 0 �2.3 6 22 �41 96

ε13 [10
�4] 0 2.5 �11 24 52 77

ε22 [10
�4] 0 �1.9 5 16 �44 95

ε23 [10
�4] 0 2 9 25 �30 83

ε33 [10
�4] 0 0 0 0 0 0
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are then combined with six complex elastic strain states corresponding to an

equivalent von Mises elastic strain εvm of 0 (unstrained), 5�10�4, 2�10�3,

5�10�3, 1�10�2 and 2�10�2.

The second group of test conditions, summed up inTable 3, is constructed

similarly to the first one. This time, the equivalent elastic strain εvm varies

between 1�10�4 and 5�10�2 considering 118 cases: 58 for which elastic

strain components are equal in absolute value (except ε33¼0) and 60 cases

for which the deformation is applied through a single component (12 cases

per component, expect ε33, whose value is in bold in the table). Again, the

sign of each component is random. These 118 cases are combined with six

disorientation angles Δθ, namely 0°, 0.3°, 0.6°, 1°, 1.5°, and 3°. Small disori-

entations are preferred because elastic strains are usually measured in purely

elastically deformed or slightly plastically deformed metals.

Note that ε33 is systematically zero. This is because the HR-EBSD/TKD

technique is insensitive to hydrostatic dilatation. Only the deviatoric defor-

mation gradient is bF e
is determined from the observed displacement field

on the scintillator. This uncertainty is commonly removed by assuming a

Table 3 Overview of the test cases with an equivalent elastic strain ranging from
1�10�4 to 5�10�2.

118558+3×20 cases with varying von Mises equivalent elastic strain εvm

60 cases 12 cases* 12 cases* 12 cases* 12 cases* 12 cases*

εij ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:ε2vm
� 	

=16
q

except ε33¼0

ε11¼εvm ε12¼εvm ε13¼εvm ε22¼εvm ε23¼εvm
εij¼0 for all other strain components

* Corresponding to values in bold hereafter

where εvm� [1×1024, 5×10–2]

�10�4 1 2 3 4 5 6 7 8 9 10 12 14 16

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

48 50 52.5 55 57.5 60 62.5 65 67.5 70 72.5 75 77.5 80 82.5

85 87.5 90 95 100 125 150 175 200 250 300 350 400 450 500

6 disorientation angles Δθ

Δθ [°] 0 �0.3 �0.6 �1 �1.5 �3

w1 [
°] 0 0.173 0.346 0.577 0.866 1.732

w2 [
°] 0 0.173 0.346 0.577 0.866 1.732

w3 [
°] 0 0.173 0.346 0.577 0.866 1.732
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traction-free surface, as explained in Chapter “Measuring elastic strains and

orientation gradients by scanning electron microscopy: Conventional and

emerging methods” by Ernould et al. (section 3.1.3). However, this requires

expressing the results in the sample frame. Not to introduce unnecessary cal-

culations with respect to the purpose of this study, all elastic strain et rotation

components are here expressed in the scintillator’s frame and ε33 is zero so

that bF e
equals Fe. In this way, elastic strain and rotation components in input

can be directly face to those derived from the DIC measurements in the

scintillator’s frame.

The elastic deformation gradient tensor Fe is computed considering a

“finite rotations – small strains” framework (see section 3.1.4 in Chapter

“Measuring elastic strains and orientation gradients by scanning electron

microscopy: Conventional and emerging methods” by Ernould et al. for

more details):

F e ¼
1+ ε11 ε12 ε13
ε12 1 + ε22 ε23
ε13 ε23 1 + ε33

24 35 c2:c3 s1:s2:c3� c1:s3 c1:s2:c3 + s1:s3
c2:s3 s1:s2:s3 + c1:c3 c1:s2:s3� s1c3
�s2 s1:c2 c1:c2

24 35
(9)

where ci¼cos(wi), si¼ sin(wi) and wi the rotation with respect to Xi
�!

, i.e.,

w1 ¼ w32

w2 ¼ w13

w3 ¼ w23

8><>: : (10)

This tensor describes the transition from the crystal state associated with the

reference pattern to the one associated with the target pattern.

(Mingard et al., 2011) measured the first-order radial distortion coeffi-

cient, i.e., K1 in Eq. (5), of several EBSD cameras as well as the position of

their optical center. Among those having a resolution of about 1000�1000

pixels, barrel distortion (K1<0) close to �3�10�8 was observed in average.

The extreme values were�7�10�8 and 3�10�8. Regarding the optical cen-

ter, it was most often between�15 to�55 pixels away from the center of the

screen. Consequently, and unless otherwise stated, the patterns are generated

by placing the optical center at Xopt ¼ 570 620½ �T , i.e., �36 pixels from the

image center Eleven values of K1 are considered: 0 (distortion-free), 3, 1,

�0.5,�1,�2,�3,�4,�5,�7 or�9 (�10�8). There are therefore as many

datasets of 1416 cases each.
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3. Numerical validation and convergence speed

This section first numerically validates the homography-based

approach and its integrated correction of optical distortions. It also highlights

the influence of interpolation bias on accuracy, allowing a better under-

standing of the motivations detailed in Section 2.2. Then, it assesses the angu-

lar accuracy of the global cross-correlation based initial guess. The latter is

discussed in the light of the convergence speed of the IC-GN algorithm.

To this end, both partial or complete initializations of the homography are

considered (see Chapter “Implementing the homography-based global

HR-EBSD/TKD approach” by Ernould et al., section 4.2.4), as well as an

“ideal” initial guess with perfectly a priori known rotations. Finally, the influ-

ence of the convergence criterionCconv or of a median or Gaussian spatial filter

on accuracy and convergence speed is studied.

3.1 Numerical validation
3.1.1 Parameters of the DIC analysis and definition of the error
Unless otherwise stated, no filter is applied to the images, since no continuous

background is present (Table 1). The point X0 coincides with the geometric

center of the images. It is also the center of the subsets of size 1024�1024

pixels for the global cross-correlation initial guess and 901�901 pixels for

the IC-GN algorithm. The complete initialization of the homography is con-

sidered. Biquintic B-splines coefficients are used for interpolation and the con-

vergence criterion is set to 0.001 pixels. Rotations and elastic strains are

determined from the left polar decomposition of Fe (Eq. (9)), which is also

considered for pattern generation.

The error is calculated for each rotation or elastic strain component by

taking the absolute value of the difference between the measured and the

input values. Subsequently, the maximum error.

E ¼ max εij � εinputij

��� ���, ωij � ωinput
ij

��� ���� �
, (11)

or the maximum relative error (in percent)

Er ¼ 100∗max
εij � εinputij

εinputij

�����
�����, ωi � ωinput

i

ωinput
i

�����
�����

 !
, (12)
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where i, j�⟦1,3⟧ are considered. Note that zero components in input are

ignored in the calculation of Er.

3.1.2 Validation of the approach
Optically undistorted patterns are first considered (no correction needed).

The maximum errors as a function of disorientation angle (Fig. 2A) and

as a function of equivalent elastic strain (Fig. 2B) are shown as gray regions

bounded by the minimum and maximum of the maximum error among the

six elastic strain states (Table 2) or disorientation angles (Table 3) studied,

respectively. Indeed, no significant difference is observed between them.

The error is relatively constant and is typically 5�10�7. Of course, such a

low value stems from the nature of the images used. The strong reduction of

the interpolation bias (Section 2.2) is another determining factor, as will be

highlighted later. However, an increase in the error is observed at the largest

disorientations with a maximum of about 1�10�5. It is mainly attributed to

the introduction of noise as the warped target subset goes out of the image.

Optically distorted patterns with K1 values ranging from �9�10�8 to

3�10�8 are now analyzed, the exact optical center coordinates and distor-

tion coefficient being prescribed for the integrated correction. The maxi-

mum error is again represented by gray regions, as a function of the

disorientation angle (Fig. 2C) and as a function of the equivalent elastic strain

(Fig. 2D). In the first case, the gray region is delineated from the minimum

and maximum of the observed error among all six deformation states and for

the ten K1 values studied. In the second case, the approach is similar except

that the cases without rotation (Δθ¼0°) are treated separately. These indeed
show higher errors at low equivalent elastic strain, the maximum of which is

represented by a black dashed line in Fig. 2D.

Overall, the maximum error is typically 5�10�6, which is about an

order of magnitude higher than in the absence of optical distortion (black

region in Fig. 2A,B). In addition, the error dispersion is also much wider,

namely about �1�10�5. However, the error levels are too low to con-

clude that the correction introduces a noticeable error. The principle of

the integrated optical distortion correction is thus validated. Rather, these

differences illustrate the numerical instability concerns mentioned earlier

regarding the inversion of the distortion model. Anyway, their importance

is marginal as compared to other factors like interpolation bias, as

discussed now.
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3.1.3 Influence of the interpolation bias on accuracy
In order to illustrate the influence of interpolation bias on accuracy, test

images are now generated by bicubic interpolation of the source image.

A first dataset containing distortion-free patterns is constructed and a second

one is subject to a typical radial distortion of K1¼�3�10�8.

The error is represented just like before, but in blue regions in Fig. 2. It is

higher than when the same interpolation scheme is used for pattern gener-

ation and registration (gray regions), as expected according to (Bornert et al.,

2017). However, the maximum error remains almost always below 1�10�4

so validity of the proposed method is still not called into question.

Interpolation bias overwhelms the previously observed differences in error

between using the distortion-free patterns and those analyzed using the

Fig. 2 Maximum error when the test patterns are extracted from the source image
using biquintic B-splines coefficients (black) or bicubic interpolation (blue). (A, B)
Error in the absence of optical distortion. (C, D) Error when using the integrated correc-
tion in the presence of first-order radial distortion. Error (A, C) as a function of the
disorientation angle Δθ and (B, D) as a function of the equivalent elastic strain εvm.
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correction. The influence of the correction is only visible through the lower

limit of the blue regions. As already observed in the case of biquintic

B-splines, it is higher with correction (close to 1�10�5 in Fig. 2C,D) than

without (1�10�6 in Fig. 2A,B), which is still attributed to numerical

instabilities.

Surprisingly, the optical distortion-free dataset leads to the highest

error, but the difference with respect to distorted patterns remains mar-

ginal. In both cases, the error is closed to 1�10�4 at the lowest disorien-

tations in the range 0.1–0.2° in Fig. 2A,C, as well as at equivalent elastic

strain below�2�10�3 in the absence of rotation in Fig. 2B,D (blue dash-

line). Interestingly, the error gradually decreases as the equivalent elastic

strain increases and merges with the level of error associated with the other

five disorientation angles when εvm��5�10�3, i.e., when the effects of

elastic strains are as large as those of rotations (0.3°�5�10�3 rad).

3.2 Initial guess and convergence speed
Performances of the global cross-correlation based pattern pre-alignment

method is evaluated from undistorted patterns having the same projection

geometry (δPC¼0). Its angular error is first measured and discussed. Then

the partial (h31¼h32¼0) and complete homography initializations are

compared in terms of convergence speed of the IC-GN algorithm. The

results are also discussed in the light of an “ideal” estimate of the solution,

i.e., the rotations are a priori known exactly.

3.2.1 Rotation assessment from the global cross-correlation based
initial guess

The angular error of the initial guess is defined as the disorientation angle

between the estimated and the true solution. This angle is zero in the case

of an “ideal” initial guess, so only the contribution of elastic strains remains

to be determined.

As detailed in section 4.2 in Chapter “Implementing the homography-

based global HR-EBSD/TKD approach” by Ernould et al., the global

cross-correlation based pattern pre-alignment relies on an in-plane rotation

and a translation measurement, from which relative rotations of the crystal

are estimated. They are identical depending on whether the homography is

initialized partially (six parameters) or completely (eight parameters).

Indeed, the initialization only affects the shape of the initially warped target

subset (a square or a uncross quadrilateral, respectively).

17Numerical validation and influence of optical distortions on accuracy

ARTICLE IN PRESS



Fig. 3A,B shows the angular error of the initial guess when the applied

disorientation or equivalent elastic strain are equally distributed among all

components, respectively. Extreme cases for which a single component is

non-zero are omitted at this point. The initial guess is typically disoriented

by 0.25° or less from the solution as long as εvm	 5�10�3 andΔθ	2°, and
by 0.5°�0.25° otherwise. The presence of large disorientations appears at
first sight less problematic than the one of equivalent elastic strain of the

order of 1% or more. Indeed, the angular accuracy of the initial guess

degrades sharply in Fig. 3B while a gap is observed between the brown curve

(εvm¼2�10�2) and the other ones in Fig. 3A.

3.2.2 Influence of gnomonic distortion
Fig. 3c shows the angular error when the total disorientation is carried by a

single rotation component. Only the case εvm¼ 5�10�3 is displayed for

illustrative purposes and the orange curve in Fig. 3A is reported in black

to ease comparison. The error is the highest regarding the rotation w13 (blue

line), which is mainly responsible for a horizontal translation of the patterns see

fig. 7 in Chapter “Implementing the homography-based global HR-EBSD/

TKD approach” by Ernould et al.). Since the PC is placed 33% of the pattern

half-width above the image center, the top of the patterns is less distorted by

the gnomonic projection than their bottom. Conversely, the left and right

sides are almost equally affected by gnomonic distortion since the PC is 4%

of the pattern half-width away from the center along the horizontal direction.

Consequently, the error remains quasi constant regarding the rotation w32
(green line), which primarily shifts of the pattern vertically. Asymmetry of

the gnomonic projection effects at the pattern scale thus appears more harmful

for rotation assessment than gnomonic distortion itself.

The error is also relatively constant over the investigated disorientation

range regarding the rotation w21 (red line), which induces an in-plane rota-

tion of the pattern with respect to the PC. Radial effects of the gnomonic

distortion are also centered on this point. Therefore, gnomonic distortion

does not affect the measurement of a pure rotation w21 by means of

Fourier-Mellin transform based cross-correlation (FMT-CC). However,

computing the FMT involves here a polar resampling with a resolution

of about 0.18° (180°/1024 pixels). Consistently, an accuracy of 0.25° is

obtained here in the presence of elastic strains of similar magnitude (εvm¼
5�10�3 and 0.25° is close to 5�10�3 rad).

The error when the deformation is fully carried by a single elastic strain

component with no rotation applied (Δθ¼0°) is plotted using colored
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lines in Fig. 3D. The black curve is just the same than previously in

Fig. 3B. It is framed by the error associated with the extreme cases, which

is also the case in Fig. 3C by the way. Once again, the influence of the PC

location explains the discrepancies in the error as a function of εvm when a

pure dilatation ε11 or ε22 is applied (green curves). Their effect is a hori-

zontal or a vertical displacement gradient, respectively. The resulting

translation of the displacement field at the subset scale is zero provided

the PC coincides with the geometric center of the subset. It is not the case

here. The larger the dilatation applied, the longer the resulting translation.

Which is perceived as a rotation. The angular error thus increases with εvm.
In addition, the PC being more vertically eccentric than horizontally, the

latter increase is faster regarding ε22 (dark green curve) than regarding ε11
(light green curve).

Fig. 3 Angular error of the global cross-correlation based initial guess as a function of
(A) the disorientation angle Δθ and (B) the equivalent elastic strain εvm, when distributed
between the different component. Angular error as a function of (C) Δθ when εvm¼
5�10�3 and (D) of εvm when Δθ ¼ 0°, when considering extreme cases (rotation or
deformation carried by a single component).
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Pure shear ε13 or ε23 (orange curves in Fig. 3D) roughly shifts patterns

like rotations w13 and w23 do (see Fig. 9 in Chapter “Measuring elastic strains

and orientation gradients by scanning electron microscopy: Conventional

and emerging methods” by Ernould et al.). However, applying one or

the other rotation gives a similar error in Fig. 3C, as long as the disorienta-

tion angle is lower than�3°. Consistently, no noticeable difference in error
is observed between ε13 or ε23 since the maximum elastic strain applied is

2�10�2, which in radians corresponds to 1.15°. It is therefore no coinci-

dence that the angular error is about 1°.
Overall, it is necessary to step back from the observed error. The primary

goal of the propose initial guess is to pre-align the patterns. The present

observations testify to its tendency to capture the effects of elastic strains

and to interpret them wrongly as rotations. Beyond the angular error, the

convergence speed of the IC-GN algorithm must be studied.

3.2.3 Convergence speed of the IC-GN algorithm
The first goal of the global cross-correlation approach is to pre-align patterns

so that the IC-GN algorithm converges rapidly. The number of iterations

after a partial or complete initialization of the homography is shown in

Fig. 4A,B, which is related to Fig. 3A,B. Regarding the complete initiali-

zation, the number of iterations is indicated by colored curves associated

with the different elastic strain states (Fig. 4A) or disorientation angles

(Fig. 4B) studied. The deviations between the curves correlate with those

previously observed on the disorientation angle between the initial estimate

and the solution (Fig. 3A,B). In comparison, the number of iterations fol-

lowing a partial initialization is represented by a red area bounded by the

minimum and maximum observed among all cases.

A complete initialization of the homography ensures a convergence of

the IC-GN algorithm in less than 30 iterations in most cases. Between 3

and 11 iterations are typically required for the most usual disorientation and

elastic strain levels, namely Δθ� [0;3°] and εvm	5�10�3. On the contrary,

a partial initialization results in a fast increase in the number of iterations as

soon as the disorientation exceeds 2° (Fig. 4A). This is directly related to

the higher values of the initial residuals, as illustrated in fig. 13c’ in Chapter

“Implementing the homography-based global HR-EBSD/TKD approach”

by Ernould et al. The assumption of a rigid transformation of the target subset

becomes too coarse beyond 7–8° of disorientation. Indeed, the IC-GN algo-

rithm starts to diverge, except in the case of aw21 rotation. Asmentioned in the

previous section, its measurement is not affected by gnomonic distortions.
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To better judge the performance of the method, an “ideal” initial guess is

considered. The target subset is warped at the beginning of the IC-GN algo-

rithm according to the exact rotations. The number of iterations is represen-

ted by the colored curves in Fig. 4C,D while the blue areas report the

minimum and maximum number of iterations after a complete initialization

(determined from the colored curves in the Fig. 4A,B).

As already discussed, the pattern pre-alignement method detects global

displacements caused by elastic strains. Patterns subject to an equivalent elas-

tic strain greater than �1% are thus better pre-aligned than after an “ideal”

initial guess. At low elastic strains (εvm	2�10�3), both the ideal and the

Fig. 4 (A, B) Number of iterations after a partial (red regions) or complete (colored cur-
ves) initialization of the homography as a function of (A) the disorientation angle and
(B) the equivalent elastic strain. (C, D) Number of iterations when the rotations are a
priori known in an exact way (colored curves) compared with the complete initialization
of the homography (blue regions) as a function (C) of the disorientation angle or (D) of
the equivalent elastic strain.
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complete initialization result in a very similar number of iterations as long as

the disorientation is less than one degree. Then, an “ideal” initialization

unsurprisingly leads to a higher numerical efficiency of the IC-GN algo-

rithm. When an initial guess disoriented by 0.1° or 0.5° is prescribed (not

shown here), 6–8 and 20–50 iterations are necesserary, respectively. This

is in line with the proposed method.

3.3 Variability of the results
Following the discussion in Chapter “Implementing the homography-based

global HR-EBSD/TKD approach” by Ernould et al., the influence of the

convergence criterion and of a median or Gaussian spatial filter on the

IC-GN algorithm are now investigated in terms of accuracy and number

of iterations.

3.3.1 Relevance of the convergence criterion
More than 200 iterations are often required at the highest disorientations

(13–14°) in Fig. 4 (Cconv¼0.001 pixel). However, this also concerns the case

of an “ideal” initial guess. A slow convergence cannot thus be attributed to

the pattern pre-alignment method alone. The sudden increase of the num-

ber of iterations takes place as the target subset goes out the pattern. The

introduction of noise for the concerned pixels may be the reason. Slow con-

vergence issues are not a priority at this stage of development, especially

since the IC-GN algorithm converges to the expected solution (Fig. 2).

The relevance of the convergence criterion Cconv is nevertheless checked.

The previous dataset (optical distortion-free, fixed projection geometry)

is re-analyzed by considering an “ideal” initial guess and different values

of Cconv :

– 0,1 pixel (expected to be not restrictive enough).

– 0,01 pixel (minimum recommended by (Pan, 2014)).

– 0,001 pixel (chosen according to the literature).

The number of iterations is plotted as a function of the disorientation angle

in the case where εvm¼2�10�2 in Fig. 5A. The observed trend is never-

theless representative of the other cases. In addition, the number of iterations

is plotted as a function of equivalent elastic strain in Fig. 5B. Since the dis-

orientation angle has a marginal influence, as shown by the colored curves in

Fig. 4D, only the average of the six cases is displayed. As expected, the

IC-GN algorithm converges often prematurely when Cconv is 0.1 pixel

(red dashed lines). This is accompanied by maximum errors much larger

than 1�10�4 in Fig. 5C,D. In contrast, the error is typically less than
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1�10�6 for a convergence criterion of 0.01 pixel or 0.001 pixel, with a

maximum of �1�10�5 for disorientations greater than 10°. These two

Cconv values lead to quasi-identical results, so they are represented by the

same green curve. A convergence criterion of 0.001 pixel appears as a

Fig. 5 Results obtained without pattern filtering for different convergence criterion
Cconv or after applying a spatial filter while considering Cconv¼ 0.001 pixel. (A, B)
Number of iterations and (C, D) maximum error as a function of (A, C) the disorientation
angle and (B, D) the equivalent elastic strain. Detail of 80�80 pixels of a pattern (E) with
no filtering, (F) after a median filter of radius 1 pixel, (G) after a Gaussian filter of radius 1
pixel, (H) after a Gaussian filter of radius 2 pixels.
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suitable choice, meaning that recommendations from the literature consid-

ering subsets of a few tens of pixels size are transferable to larger subsets.

3.3.2 Influence of a median or Gaussian spatial filter
In anticipation of the application of the method to experimental images, the

influence of a median or Gaussian filter on accuracy and convergence speed

is studied (Cconv¼ 0.001 pixel).

A median filter based on the four nearest neighbors is applied. Its effect is

illustrated from a 80�80 pixel detail in Fig. 5F, which is to be compared to

the original detail in Fig. 5E. Taking the unfiltered case as a reference (green

curves in Fig. 5), the application of a median filter (orange curve) reduces the

number of iterations by about 50% at large elastic strains (2% in Fig. 5A) but

increases it by 1 or 2 iterations at smaller levels (Fig. 5B). The main short-

coming of this filter is the increase of the error by one order of magnitude as

compared to in the absence of filtering in Fig. 5C,D (but it nevertheless

remains below �1�10–4).

Conversely, a Gaussian filter with a radius of one pixel (light blue curves,

detail Fig. 5G) or two pixels (dark blue curves, detail Fig. 5H) is accompa-

nied by a reduction in the maximum error, except at large disorientations.

Compared to the unfiltered case, a Gaussian filter with a radius of two pixels

can reduce the number of iterations by 90%, without loss in accuracy.

These observations relativize the slow convergence issues observed.

They highlight the need to further study the definition of convergence

and to identify factors impacting the numerical efficiency of the IC-GN

algorithm as discussed in Chapter “Implementing the homography-based

global HR-EBSD/TKD approach” by Ernould et al.

4. Necessity of a correction of optical distortions

The error made when neglecting first-order radial distortion is first

quantified, as well as the influence of the position of the PC and of the opti-

cal center. Then, the necessity of a correction of optical distortions, even at

small disorientation angles is demonstrated. Finally, the accuracy on the cor-

rection parameters ensuring the effectiveness of the correction is evaluated.

4.1 Error in the absence of a correction
4.1.1 Influence of the coefficient of distortion
The ten datasets subject to different K1 values from Section 3.1 are

re-analyzed while disabling the correction. The maximum error with and
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without correction is compared in Fig. 6 in the case K1¼�3�10�8. While

the correction keeps the error below �2�10�5, it exceeds �1�10�4 oth-

erwise. In other words, an optical distortion typical of EBSD camera is suf-

ficient to induce larger errors than the commonly claimed accuracy of the

HR-EBSD/TKD technique under suitable experimental conditions.

Without correction, the error increases rapidly with the disorientation

angle in Fig. 6A, which is also visible by the clear “stacking” of the curves

in Fig. 6Bwhere εvm	5�10�3. Conversely, the error is little affected by the

level of elastic strain. No clear trend is observed between the six elastic strain

states studied in Fig. 6A while curves are relatively flat in Fig. 6B.

The absence of correction is accompanied by oscillations in the error.

Visually, it is also the case with correction, but the order of magnitude is

much smaller. The homography is not able to describe faithfully the dis-

placement field between the distorted images. The IC-GN algorithm then

probably converges to a local optimum of the similarity criterion. As the dis-

placements are mainly imposed by rotations, these oscillations are particu-

larly visible in Fig. 6A, especially at large disorientations. Concerning

Fig. 6B, the oscillations become noticeable from the moment displacements

caused by elastic strain equal those of rotations. For example, the black curve

(Δθ¼0°) clearly oscillates from de εvm��5�10�3, which in radians is

about 0.3°.

Fig. 6 Comparison of the maximum error obtained with and without correction in the
case K1¼�3�10�8. Maximum error as a function of (A) the disorientation angle and
(B) the equivalent elastic strain.

25Numerical validation and influence of optical distortions on accuracy

ARTICLE IN PRESS



The trends observed for K1¼�3�10�8 also apply to the other nine

datasets. Since the error slightly depends on elastic strains, the average error

of the six studied deformation states is computed and its linear regression

with respect to the disorientation angle is plotted in Fig. 7A., i.e., E¼α.
Δθ+β. The coefficient of determination R2 is between 0.954 and 0.958

depending on the dataset. In addition, the slope α and the intercept β are

both proportional to K1 in absolute value (R2 > 0.999), as highlighted in

Fig. 7B regarding β. Neglecting a barrel (K1<0) or a pincushion (K1>0)

radial distortion consequently leads to the same level of error, as shown

by the red dash-lines in Fig. 7A.

As a conclusion, neglecting a first-order radial distortion of coefficient

K1 lying between �2�10�8 to �4�10�8, which is typical of EBSD cam-

eras (Mingard et al., 2011), results in error of the order 1 to 5�10�3.

4.1.2 Influence of the PC and optical center locations
The influence of the position of the PC and of the optical center on the error

(without correction) is studied through six datasets designated by the

letters A to F in Fig. 8. They are generated by applying a radial distortion

Fig. 7 (A) Linear regression of the error as a function of the disorientation angle when
neglecting a first-order radial distortion of coefficient K1. (B) Linear regression of the
intercept of the error (i.e., the error at Δθ¼0°) as a function of the absolute value of
the distortion coefficient K1.
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of coefficient K1¼�3�10�8 and considering a fixed projection geometry

(δPC50). The position of the PC is chosen to be representative of the

EBSD (cases A, B, C), the off-axis TKD (case D) and the on-axis TKD

(cases E and F) configurations. The absolute coordinates of the optical center

and of the PC are specified in the table in Fig. 8B. As a reminder, the size of

the pattern is 1200�1200 pixels.

Errors associated with all configurations are more or less superimposed in

Fig. 8A,B, meaning the PC position is not a determining factor. To better

Fig. 8 Maximum error in the absence of correction for different PC and optical center
positions (absolute coordinates in the table). Maximum error as a function of (A) the
disorientation angle and (B) the equivalent elastic strain. (C) Distribution of the absolute
deviations in error between the maximum errors obtained for a dataset and those for
configuration F.

27Numerical validation and influence of optical distortions on accuracy

ARTICLE IN PRESS



quantify differences between configurations, their respective error is com-

pared to that of configuration F (i.e., PC and optical center coinciding with

the center of the image). The distributions in Fig. 8C show the difference in

error between configurations is essentially less than 1.5�10�4.

The main differences in error concern the cases where the rotations w32

and w13 are simultaneously zero, which are included within the gray region

in Fig. 8A. They stand out because a pure (in-plane) rotation w21 is perfectly

measurable without correction if the PC coincides with the optical center.

Errors lower than 1�10�5 are thus observed for configurations C and F

(orange diamonds and black disks, respectively). Conversely, the upper edge

of the gray region is delimited by the configuration A, B and D (blue and

gray markers), whose the distance between the PC and the optical center

is higher.

Apart from the specific case w32¼w13¼0, the error when neglecting

first-order radial distortion is marginally affected with the PC and optical

center positions. Therefore, errors as a function of K1 and Δθ presented

in Fig. 7A (configuration A) are generalizable.

4.2 Relative error on rotation and elastic strain components
The importance of optical distortions for accurate HR-EBSD/TKDmeasure-

ments was discussed in Chapter “Measuring elastic strains and orientation

gradients by scanning electron microscopy: Conventional and emerging

methods” by Ernould et al. (section 3.3). Provided the reference and target

patterns are distorted in the same way, as it is the case here, (Britton et al.,

2010) argued that neglecting a first-order radial distortion was acceptable in

the presence of rotations lower than 2.5°. The present results indicate the

opposite.

An accuracy of �1�10�4 cannot be guaranteed (Fig. 6) and the error

even reaches �8�10�4 at “only” 1° of disorientation, when neglecting a

radial distortion of coefficient K1¼�3�10�8. This agrees with the error

of 6.1�10�4 on elastic strain components reported by Britton et al. (2010).

Based on Fig. 7A, this value is nevertheless quite small given that a dis-

tortion of 10�7 was applied. Actually, only particular cases were investigated

by Britton et al. (2010): an elastic strain-free state subject to pure rotation

with respect to the normal of the sample. Granted, the latter does not coin-

cide with the scintillator’s normal, so patterns are not subject to a pure

in-plane rotation, but the transformation remain quite similar. As high-

lighted by the gray area in Fig. 8A, the error in such test conditions is likely

to be underestimated as compared to a more randomly chosen ones.
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However, the main disagreement concerns the relative error. According

to (Britton et al., 2010), it is about�1.5% of the value applied, which is mar-

ginal. This statement seems insidious to the present authors since it does not

correspond to the usual definition of the relative error. This value was

obtained by dividing the error on elastic strain components by the applied

rotation, namely 2.5° or 4.4�10�2 rad. Note that this rotation was the

onliest non-zero component, meaning relative error on elastic strains is log-

ically undefined (or infinite). Given the noise floor was about 1�10�4, a

solution might have been to consider that obtaining 6.1�10�4 instead of

zero is a relative error of 600%.

Considering the results without correction in Fig. 6, the maximum rel-

ative error is computed according to Eq. (12) and plotted in Fig. 9A,B. The

cases Δθ¼0° and εvm¼0 are omitted because many components are zero,

Fig. 9 Maximum relative error as a function of (A) the disorientation angle and (B) the
equivalent elastic strain when radial distortion of coefficient K1¼�3�10�8 is
neglected. Relative error on each elastic strain or rotation component as a function
of the disorientation angle when the equivalent elastic strain is (C) 5�10�4,
(D) 2�10�3, (E) 1�10�2.

29Numerical validation and influence of optical distortions on accuracy

ARTICLE IN PRESS



biasing the comparison with the other curves. The maximum relative error

is typically several tens of percent. It increases with the disorientation angle

and decreases with the equivalent elastic strain. For elastic strains of the order

of 10�4, the relative error exceeds 100%. It even reaches 1000% depending

on the disorientation angle (Fig. 9B), which is consistent with the value of

600% deduced from (Britton et al., 2010). Correcting optical distortions thus

appears necessary for any accurate measurement of rotations and elastic

strains, nomatter the disorientation angle is small or the patterns are distorted

in the same way.

The relative error on each of the elastic strain or rotation components

(non-zero in input) is plotted for the case εvm¼�5�10�4 (Fig. 9C),

�2�10�3 (Fig. 9D) and�1�10–2 (Fig. 9E). In general, the elastic strain

components are more affected by optical distortions than are the rotation

components. This observation nevertheless reverses as soon as the displace-

ments generated by the elastic strains become preponderant. Fig. 9E shows

that in the case of εvm¼ 1%, the maximum relative error at low disorienta-

tions is imposed by the relative error on rotations (blue points) and no longer

by the one on elastic strains. This explains the increase of the maximum

relative error for εvm�5�10�3 at disorientations lower than �0.3°
(�5�10�3 rad) in Fig. 9A (orange, red, and brown curves).

4.3 Required accuracy of the distortion model parameters
In practice, the distortion model implemented in the correction approxi-

mates the true optical distortion effects. Here, the correction is assumed

effective if the maximum error does not exceed 1�10�4. Based on this,

the required accuracy on the position of the optical center and on the value

of the distortion coefficient K1 is evaluated. The study focuses on angular

disorientations less than 3° since accurate measurement of elastic defor-

mations is usually limited to slightly plastically deformed metals or purely

elastically deformed semiconductors.

The PC and optical center locations showing little influence on the

maximum error in Section 4.1.2, only configuration A (Fig. 8) is considered.

As a reminder, it is representative of EBSD cameras. Calculations were per-

formed using erroneous values for the absolute coordinates of the optical cen-

ter (Xopt ¼ 570 620½ �T ) and/or of the distortion coefficientK1¼�3�10�8.

Fig. 10 gathers the most relevant results. Note that errors greater than

�2�10�5 are attributable to optical distortion according to the numerical

validation (Fig. 2C,D).

30 Cl�ement Ernould et al.

ARTICLE IN PRESS



Fig. 10 Maximum error when erroneous parameters are prescribed to the first-order
radial distortion model involved in the correction (K1¼�3�10�8 applied).
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When the optical center is correct, an accuracy of �1�10�9 on K1

appears sufficient, the maximum error remaining below �5�10�5 up to

3° of disorientation in Fig. 10A. The error reaches �1�10�4 at disorienta-

tions higher than�6.5° (not shown here). However, such an error is already

observed from 3° of disorientation for uncertainties between �2�10–9

(Fig. 10B) and�2.5�10–9 (Fig. 10C). Actually, an error of δK1 on the coef-

ficientK1 induces the same error as if a radial distortion of coefficient δK1 was

neglected. The accuracy of�1�10�9 required here is thus not specific to the

present K1 value.

When K1 is correct, the error remains below �5�10�5 as long as the

prescribed optical center is not more than�7 pixels away from its true posi-

tion (Fig. 10D). At 3° of disorientation, the maximum error is�1�10�4 for

�15 pixels error in the optical center position (Fig. 10E).

When the optical center and the distortion coefficient are simultaneously

erroneous, an uncertainty of 1–3 pixels in the true position of the optical

center and an uncertainty of �1�10–9 in the K1 coefficient are acceptable.

As shown in Fig. 10F, the maximum error does not exceed 1�10�4 and

remains essentially below �5�10–5.

5. Discussion

This chapter confirms numerically that a linear homography describes

the displacement on the scintillator sought by the HR-EBSD/TKD tech-

nique. The working principle of the optical distortion correction integrated

in the IC-GN algorithm is also validated.

Errors are particularly low when optical distortions are properly

corrected or simply absent. However, they are not intended to be compared

with those of other studies, especially since the images are not individual

dynamical simulations. As detailed in Section 2.2, some diffraction effects

have not been reproduced. However, they do not constitute an obstacle

to the numerical validation of the method. On the one hand, the approach

is supported by previous works like (Vermeij & Hoefnagels, 2018). On the

other hand, it enables to pay particular attention to interpolation bias.

Actually, its influence is at least as important as the diffraction effects absent

from the test images used.

As shown in Fig. 2, interpolation biais can limit accuracy to�1�10�4 in

the presence of elastic strains representative of metals (εvm	�2�10�3) and

rotations of a few tenths of a degree (Δθ	0, 3°), namely in the typical
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application conditions of the HR-EBSD/TKD technique. Interestingly,

such a level of error agrees with the error of 1 to 2�10�4 obtained from

dynamically simulated patterns by (Britton & Wilkinson, 2012) and

(Ruggles et al., 2018), who used bicubic and cubic B-splines interpolation,

respectively. Still using dynamically simulated patterns, errors as low as

2�10�5 and typically worth 5�10�6 are reported by Maurice et al.

(2012) and Vermeij and Hoefnagels (2018), respectively. Unfortunately,

the interpolation scheme is not specified.

First raised by Maurice, Dzieciol, and Fortunier (2011), the question of

the interpolation scheme is becoming increasingly inevitable since the intro-

duction of the remapping technique (Britton & Wilkinson, 2012; Maurice

et al., 2012; Zhu, Kaufmann, & Vecchio, 2020) and of global HR-EBSD/

TKD approaches (Ernould, Beausir, Fundenberger, Taupin, & Bouzy,

2020a; Ruggles et al., 2018; Shi et al., 2019; Vermeij, De Graef, &

Hoefnagels, 2019; Vermeij & Hoefnagels, 2018). The question of the opti-

mal interpolation scheme for the HR-EBSD technique remains open.

(Ruggles et al., 2018) noted that biquintic B-splines do not provide an

accuracy gain compared to cubic B-splines with lower numerical cost.

As mentioned in Chapter “Development of a homography-based global

DIC approach for high-angular resolution in the SEM” by Ernould

et al., the IC-GN algorithm was chosen because it benefits from a large lit-

erature. Recently, (Su et al., 2019) proposed a method for removing sys-

tematic errors due to interpolation. It consists of applying random shifts on

the positions to be interpolated during the FA-GN (Forward-additive

Gauss-Newton) or IC-GN algorithm.

By minimizing errors due to interpolation bias, the present study allows

small errors of the order of 1�10�4 or less caused by uncorrected or

improperly corrected optical distortions to be quantify, especially in Fig. 10.

By avoiding time-consuming simulations, thousands of tests conditions

could be analyzed in a reasonable time. This is an important point that is

sometimes overlooked in the literature. Care should be taken to ensure that

the DIC algorithms are able to account for all necessary displacements or

displacement gradients that may occur between the reference and the target

pattern. As an example, (Ruggles et al., 2018) validated a global HR-EBSD/

TKD method also employing an IC-GN algorithm from dynamically sim-

ulated patterns, but without including shear of the lattice cell. As detailed in

Section 4.2 regarding the necessity of a correction of optical distortions,

wrong conclusions may be drawn from few cases, especially if simple

rotations or elastic strains states are applied.
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More generally, the HR-EBSD/TKD community would benefit from

having a common bank of simulated or experimental patterns. In this spirit,

(Shi et al., 2019) experimentally validated their method by reusing the data

from (Plancher et al., 2016) in a single crystal of austenitic 316L steel in

4-point bending.

Regarding the global cross-correlation based initial guess, it fulfilled its

purpose since the IC-GN algorithm converges in less than �10 iterations

in the presence of moderate disorientation and elastic strains (Δθ	3° and

εvm	5�10�3) and in less than �30 iterations for other cases (ignoring

the few cases of slow convergence). These values are obtained with a com-

plete initialization of the homography. As expected, convergence after a par-

tial initialization is limited to moderate disorientations (< 7°) in the case of a
projection geometry typical of the EBSD configuration (Fig. 4A,B). Note

that applications to EBSD and on-axis TKD patterns are intended in this

work, so the pre-alignment method is not particularly designed for

off-axis TKD patterns, for which asymmetry of gnomonic distortion is sig-

nificant along the vertical direction.

The relevance of the convergence criterion, Cconv¼0.001 pixel is con-

firmed (Fig. 5), although slow convergence is sometimes observed. It seems

related to implementation details since the same issue occurs even when the

initial guess is “ideal” (homography initialized from the exact rotations). The

number of iterations is also highly dependent on spatial filters (up to 90%

reduction when applying a Gaussian filter of radius 2 pixels), echoing similar

observations from experimental patterns by (Shi et al., 2019). The latter

authors explain that a Gaussian filter reduces the high frequencies associated

with noise, which impair convergence speed. The introduction of noise for

points outside the target pattern therefore seems inappropriate. This imple-

mentation aspect has not been optimized, at this stage of development as it

concerns very few cases in practice.

The robustness of the IC-GN algorithm against noise can be improved

using errors functions, which weight pixels according to their residuals

(Sánchez, 2016). However, the Hessian matrix must then be recomputed

at each iteration, like in the FA-GN algorithm. In this case, the numerical

efficiency of the IC-GN algorithm is strongly affected but it is still

advantageous as compared to the FA-GN algorithm because of the

Hessian-matrix evaluation at p¼0. Recently, (Shi et al., 2021) proposed

a calibration technique of EBSD patterns, which involves weights in the

DIC algorithms. They notably highlighted readout artifacts of the charge

coupled device.
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Concerning optical distortion, errors made by neglecting a first-order

radial distortion increases linearly with the absolute value of the distortion

coefficient K1 as well as with the disorientation angle. This linear relation-

ship, already highlighted by Britton et al. (2010), is known in the literature.

It is precisely used to estimate K1 from the DIC measurement error on the

displacement of a sight translated using a stage (Pan, Yu,Wu, &Tang, 2013).

When neglecting a typical barrel distortion K1¼�3�10�8 (Mingard

et al., 2011), the error is between 1 and 5�10�3 in the presence of disori-

entations lower than 8°. The same order of magnitude is reported by

(Britton et al., 2010) considering optically distorted target patterns and a

distortion-free reference. Their conclusion regarding the case where all pat-

terns are distorted in the sameway is however contradicted by this study. On

the one hand, the typical accuracy of 1�10�4 cannot be achieved when

radial distortion of coefficient K1¼�3�10�8 is neglected (Fig. 6). On

the other hand, the relative error on the rotation or elastic strain components

is much higher than 10%. They are only two specific situations, in which not

accounting for optical distortion appears acceptable: when measuring elastic

strains about 10�2 in the presence of disorientations of less than 1° or when
considering exclusively rotations at disorientations higher than �0.5°
(Fig. 9).

Ideally, this study should be extended to more complex distortion

models. Here, only first-order radial distortion is considered since it has a

predominant effect (Drap & Lefèvre, 2016; Pan, Yu, Wu, & Tang, 2013;

Wang et al., 2008) and because it admits an analytical inverse distortion

model. It arises that the required accuracy on the position of the optical cen-

ter and the first-order distortion efficient K1 matches the resolution of the

measurements in (Mingard et al., 2011). More specifically, locating the opti-

cal center within one or two pixels and determining K1 within 1�10�9 is

necessary so that the error remains below 1�10�5 in the presence of disori-

entations up to 3° (Fig. 10F). Optical distortions of EBSD camera should be

more finely characterized to verify the extent to which tangential distortion

or second-order radial distortion affect them and can be neglected or not.

Beyond a software solution, like the proposed correction, hardware

improvements are also possible. The HR-EBSD technique would benefit

from dedicated acquisition systems not limited to simply increasing the reso-

lution and sensitivity of the camera. In addition to optical distortion, (Mingard

et al., 2011) pointed out the lack of rigidity and repositioning precision of

most camera mechanical insertion systems. They are a hindrance to accurate

SEM calibration using the moving screen technique (Maurice et al., 2011;
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Mingard et al., 2011). Optical distortions can also be greatly reduced by bilat-

eral telecentric lenses, whose the interest for surface deformation measure-

ment in experimental mechanics was showed by (Pan, Yu, & Wu, 2013).

In addition, they lessen problems associated with camera self-heating

(Ma, Pang, & Ma, 2012; Pan, Yu, & Wu, 2013). A more radical solution

is to use optic-free devices. Therefore, EBSD cameras with a scintillator con-

nected to the sensor using fiber-optic tapers have been commercialized for a

few years.

6. Summary

6.1 Numerical validation of the method
• The homography-based global HR-EBSD/TKD approach and the inte-

gration of a correction of optical distortion in the IC-GN algorithm are

validated numerically in the presence of disorientations up to 14° and
equivalent elastic strains up to 5%.

• Byminimizing the error sources during the generation of the test images,

the present study highlights the influence of the interpolation bias on

accuracy. It can limit the accuracy of the method to 1�10�4 when small

rotations (	0.3°) and elastic strain (	2�10�3) are present.

• The global cross-correlation based initial guess ensures the convergence

of the IC-GN algorithm to the solution. However, a partial initialization

of the homography is not recommended in the presence of disorienta-

tions greater than �7°.
• A value of 0.001 pixel for the convergence criterion Cconv is relevant,

consistently with the literature (Pan, 2014; Pan, Li, & Tong, 2013;

Shao et al., 2015; Zhang et al., 2015). However, slow convergence is

sometimes observed at the largest disorientations (> 11°). It is likely
due to the introduction of noise, the initial guess being not in question.

A study of factors influencing the convergence as well as the optimization

of its definition is desirable, as discussed in Chapter “Implementing the

homography-based global HR-EBSD/TKD approach” by Ernould et al.

6.2 Influence of optical distortion on accuracy
• The error made when neglecting a first-order radial distortion typical of

EBSD cameras, i.e.,K1¼�3�10�8, (Mingard et al., 2011) is of the order

of 10�3 but can reach 10�2. This error increases linearly with the absolute
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value of the distortion coefficient and with the disorientation angle.

The equivalent elastic strain and the position of the PC have no significant

influence.

• A correction of optical distortions is necessary to measure elastic strains

accurately, even in the presence of small disorientations of a few tenths of

a degree, and especially if they are in the typical range of metals (1�10�4

to 2�10�3). Without a suitable correction, relative errors are likely to

exceed 100%.

• Neglecting a radial distortion of K1¼�3�10�8 leads to relative errors

of less than 10% only for rotation components provided the disorienta-

tion angle is greater than�0.3° or only for elastic strain components pro-

vided they are of the order of 1�10�2 and the disorientation angle is less

than 1°.
• ConsideringK1¼�3�10�8, accuracy of 1 to 3 pixels on the position of

the optical center and�1�10�9 on the first-order distortion coefficient

ensures the effectiveness of the correction, i.e., the error is less than

�5�10�5 in the presence of disorientation up to 3°. In comparisonwith

the projection geometry, the accuracy required on the parameters of the

optical distortion model not seem to be as critical.
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