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Modeling of large strain hardening during grain refinement
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Strain hardening was modeled at large strains taking into account the geometrically necessary dislocations (GNDs) with the help
of a recent grain refinement model. The GND density was studied experimentally with orientation imagining for oxygen-free high-
conductivity copper deformed in equal channel angular pressing and in simple shear to the same equivalent strain. The results show
that the GND density can be predicted fairly well by the model in accord with experiments, and also affects stage IV hardening.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Strain hardening; Geometrically necessary dislocation; OFHC copper; Simple shear; Grain refinement modeling
Experiments and modeling show that strain
hardening behavior is microstructure dependent and
the most relevant parameter is the heterogeneous dislo-
cation density which develops a cell structure by self-
organization of the dislocations [1]. The first widely used
model is the Kocks model, which assumes only a homo-
geneous (average) dislocation density together with the
mean free path of dislocation motion [2]. For large strain
hardening, Estrin et al. [3] and Tóth et al. [4] considered
the composite nature of the dislocation cell structure and
showed that the sharpening of the dislocation walls (i.e.
the experimentally observed decrease in their volume
fraction) can account for stage IV hardening. Rollett
and coworkers [5] could explain stage IV by incorporat-
ing the role the dislocation debris in strain hardening.
Pantleon has shown that by incorporating the geometri-
cally necessary dislocations (GNDs) in the Kocks ap-
proach, stage IV can also be obtained [6,7]. At large
strains, where grain refinement is in progress, the GNDs
are of great importance as they provide a continuous in-
crease of subgrain boundary misorientations. It is there-
fore important to study the effect of GNDs on hardening
simultaneously with grain refinement.

Recently a quantitative polycrystal grain refinement
(GR) model was proposed which is capable of predicting
texture, grain size, strain hardening and next-neighbor
disorientations from the refined grains in a single mod-
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eling frame [8]. The model is based on the lattice curva-
ture that develops mostly near the grain boundaries as
the result of a slow-down of the strain-induced lattice
rotation of an embedded crystal. Several applications
of the model proved its pertinence [9–12].

In the present work, we aim to investigate the harden-
ing behavior predicted by the GR model. During simula-
tion, the only parameter that controls the rate of the
grain refinement process – called l – is the retardation
of the lattice rotation at the grain boundary. Its value
can be in the range between 0.5 and 1; l = 1 was used
here. The GR model predicts the geometrically necessary
dislocations that have to be present in the crystal to de-
velop the curvature of the lattice. The necessary popula-
tions of GNDs for the described mechanism of the lattice
curvature were named curvature-induced dislocations
(CIDs) in Ref. [8]. Another population of GNDs are
those redundant dislocations that build disorientation
across dislocation cell walls. Their origin is stochastic,
made by the bias of the dislocation fluxes coming to
the wall from two opposite directions [6,13]. Pantleon
showed that such GNDs affect stage III only slightly
and do not affect stage IV at all [7]. The density of both
kinds of GNDs can be obtained quantitatively from the
GR model. The CID-made lattice curvature can be ex-
tracted from electron backscatter diffraction (EBSD)
orientation maps and can be compared to the prediction.

Oxygen-free high-conductivity copper was heat-
treated at 650 �C for 2 h, resulting in an average grain size
of about 24 lm. The billet of the annealed copper was
sevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.scriptamat.2011.11.002
mailto:Chengfan.Gu@monash.edu
http://dx.doi.org/016/j.scriptamat.2011.11.002


Figure 1. Map of GND density obtained from EBSD measurement
after one-pass ECAP on the ND plane. Boundaries with at least 15�
disorientation are marked with red lines while those that are between 5
and 15� are colored white. For intensities less than 0.33 � 1015 m�2,
the BC was plotted.
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processed by one-pass equal channel angular pressing
(ECAP). The EBSD measurements were performed using
a JEOL 7001F with an HKL detector with a step size of
0.1 lm. Boundaries were identified using a minimum dis-
orientation angle of 5� between adjacent pixels. In order
to obtain a strain hardening curve in the intersection
plane of the channels in the ECAP die, torsion tests were
carried out on cylindrical samples of 6 mm diameter and
15 mm length to simulate the simple shear deformation
mode of ECAP by torsion. To obtain the stress–strain
curve from the measured twisting angle and the torque
in torsion, the Nadai formula [14] was used.

The GND scalar density can be defined as the entry-
wise norm of the Nye dislocation density tensor (a) [15]
divided by the Burgers vector length:

qGND ¼
1

b
ffiffiffiffiffiffiffiffiffiffi
aijaij
p ð1Þ

Five components of the Nye tensor can be deter-
mined from two-dimensional mapping. From them, a
truncated scalar value of qGND can be calculated, which
we call qð2DÞ

GND:

qð2DÞ
GND ¼

1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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33

q
ð2Þ

In order to estimate qGND for the three-dimensional
case, we assume a to be isotropic and obtain
qGND ¼ 3qð2DÞ

GND=
ffiffiffi
5
p

by division of Eqs. (1) and (2). The
EBSD map was analyzed using the method proposed
by Pantleon [16] to obtain the measurable aij compo-
nents. For quantification of GNDs only within the grain
interiors, the adjacent pixels across boundaries display-
ing a disorientation exceeding 5� were not considered.
The obtained GND densities using a color code with
the help of the EBSDmcf Software [17] are displayed
in Figure 1. For densities smaller than 10% of the max-
imum, the color code was not used; instead, the band
contrast was plotted (“BC” in Fig. 1; the total surface
where the density is less than 10% of its maximum value
represents 49.5% of the total area). It is apparent that
the GND density shows a patterning structure in which
most of the GNDs are grouping into “walls” where their
local density is very high. The approximate average dis-
tance between these walls is about 2 lm. These walls are
most probably the precursors of new grain boundaries.
They are more frequent near the grain boundaries of
the original grains (see Fig. 1). The maximum GND
density value is 3.35 � 1015 m�2 in the map and the
average value of qGND on the map is 4.38 � 1014 m�2;
the entire measured surface was considered in the calcu-
lation of the average.

For the simulation of hardening, the GR model was
employed in which hardening was simulated with the dis-
location cell-based composite model [3,4]. Several popu-
lations of dislocations were considered in the model:
dislocation density in the cell interior (qc) and in the cell
wall (qw), and the CID density (qCID). The wall density
can be split into two populations (qw ¼ qws þ qwg), where
qws is the statistical wall dislocation density and qwg is the
GNDs that build up misorientation across the cell wall.
Transmission electron microscopy measurements show
that these cell misorientations are relatively small [18].
Nevertheless, their contribution is present in the disloca-
tion density tensor, which can be measured by the EBSD
technique described above. We used the same evolution
equations as in Ref. [8] for qc, qws and qwg.

The sharpening of the cell walls is expressed by
decreasing their volume fraction according to the for-
mula introduced in Ref. [3]: f ¼ f1 þ ðf0 � f1Þ
expð�cr=~crÞ, where f0 is the initial value of f, and f1 is
its saturation value at large strains. The quantity ~cr de-
scribes the rate of decrease of f. The same values of
parameters as those used in Ref. [3] were employed in
the present study (f0 = 0.25, f1 = 0.06 and ~cr = 3.2).
There are several parameters that control different dislo-
cation mechanisms (for details, see [8,13]: a�, b�, k0, n1

and n2. n1 and n2 are numerical parameters that describe
the fractions of statistical dislocations that contribute to
the buildup of cell misorientations. This misorientation
can be obtained from the expression h ¼ bdqwg. Finally,
the k0 parameter controls the dislocation annihilation
rate. The average dislocation density is defined for the
dislocation cell structure as follows:

qaverage ¼ qCID þ f ðqws þ qwgÞ þ ð1� f Þqc ð3Þ
The dislocation cell size is related to the total disloca-

tion density according to Holt’s formula:

d ¼ H=
ffiffiffi
q
p ð4Þ

where the H parameter is about 10 for copper [19].
The density of CIDs is estimated in the present ver-

sion of the GR model using the basic formula:

qCID ¼ C
n

bR
; ð5Þ

where R is the lattice curvature induced by the presence
of one grain boundary and n is the number of near grain
boundaries that can also induce lattice curvatures. n can
be as high as 3 for a “corner” region of the grain, taking
an initial cubic shape. For the calculation of R and n, see
the original work on the GR model [8]. C is a parameter
in Eq. (5), and can take a value of less than 1. This



Table 1. Parameters for the calculation of strain hardening during grain refinement.

qco (m�2) qw0 (m�2) s0 (MPa) f0 �c m n _c0 (s-1) a G (GPa) b (nm) H n1 n2 k0 a* b* C

1013 1014 30 0.25 3.2 20 10 1 0.25 47.4 0.256 10 0.1 0.05 2.0 0.015 0.002 0.1
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Figure 2. Experimental (continuous line) and simulated hardening
curves (symbols) for copper for different values of the C parameter. (a)
Stress–strain curves; (b) hardening rates for C = 0.0, 0.1 and 0.2,
together with the experimental rate (continuous line).

252 C. F. Gu et al. / Scripta Materialia 66 (2012) 250–253
parameter expresses the fact that the CIDs are progres-
sively building up new grain boundaries, thus, all of
them cannot be present at the same time in the crystal
in a homogeneous distribution. This is clearly demon-
strated in Figure 1 by the inhomogeneous distribution
of the GNDs. The ð1� CÞ portion of the CIDs is inte-
grated into the new grain boundaries (and are producing
increasing disorientations), while the portion repre-
sented by C can be considered to be distributed nearly
homogeneously at any given time. The possible effect
on hardening of the CID walls evidenced in Figure 1
is ignored in the present model because their spacing is
much larger than the cell size, so it is the cell structure
which determines the strength of the material. Indeed,
the predicted cell size is 0.405 lm at the end of strain
(see below) while the spacing of these walls – where they
are more or less regular – is about 2 lm. Note also that
these walls do not exceed 5� misorientations.

In the present model, the CID obtained from Eq. (5)
contributes to the strength of the cell (sc) and wall re-
gions (sw) using the rate-sensitive Taylor formula in
both the cell and wall regions:

sc ¼ s0 þ aGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qc þ qCID

p _cr

_c0

� �m

;

sw ¼ s0 þ aGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qw þ qCID

p _cr

_c0

� �m

ð6Þ

Here m is the strain rate sensitivity of slip and s0 is the
initial resolved shear strength of the crystal. The resul-
tant strength is obtained from the composite model:

sres ¼ f sw þ ð1� f Þsc ð7Þ
The stress necessary for the plastic deformation of a

grain is proportionally determined by the sres value of
the crystallographic slip obtained from Eq. (7) in the
polycrystal plasticity code. Knowing the prescribed plas-
tic strain rate _e

¼
(totally imposed), the equivalent stress is

obtained from the condition of conjugant plastic work:

�r ¼ ðr
¼

: _e
¼
Þ=�_eVM ð8Þ

where �_eVM is the von Mises equivalent strain rate.
During the simulation, that part of a grain which

reaches 5� disorientation with respect to its parent grain
orientation is considered to be a new grain. This new
grain is supposed to be free of CIDs. This hypothesis
is supported by Figure 1, which shows that the distribu-
tion of CIDs is not homogeneous; the CIDs are grouped
into walls at a scale that is about 6 times larger than the
dislocation cell walls. Between these CID walls the CID
density is very low (see Fig. 1) and can be considered to
be homogeneous. When a new grain is “born”, it is born
from these CID walls, so the CID density inside those
new grains can be ignored and the hypotheses of the
grain refinement model can be applied. An overall cur-
vature is in fact predicted by the model. However, it is
not a uniform curvature but varies locally because of
the grouping of the CID dislocations into the walls.
For all these reasons, the new grain is initially supposed
not have lattice curvature. This procedure is repeated at
several levels: four embedded grain refinement levels
were programmed and 100 nearly randomly oriented
initial grains were used in the simulations with an aver-
age grain size of 24 lm, as in the experiment. The 12
{111}<1 10> slip systems were used with rate-sensitive
slip with m = 0.05.

The modeling frame presented above was applied for
simple shear of copper up to a shear of c = 2, which is
the same strain as in one-pass ECAP in a 90� die. The
values of the parameters employed in the simulation
work are displayed in Table 1. Some of the parameters
were free (indicated in bold letters), so their values were
derived from iterative simulation work. The simulation
had to reproduce the experimental stress–strain curve
(see Fig. 2), the average grain size and the measured
average GND density. The crystallographic texture
was also reproduced [8].

The stress–strain curves obtained by simulation are
displayed in Figure 2a. The strain hardening rate
h ¼ d�r=d�e (the so-called Kocks–Mecking plot) was also
calculated, and is presented in Figure 2b. The hardening
curves were plotted for a set of C parameters (see Eq. (5)
for the meaning of C) ranging from 0 to 0.5, keeping all
the other parameters constant (see Table 1). It is clear
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Figure 3. Simulated developments of the average grain and cell sizes
obtained during one-pass ECAP.
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Figure 4. The evolution of average dislocation densities in the cell
interior (qc) and in the cell wall (qws and qwg), as well as the CID
density (qCID) as a function of the equivalent strain. The average
misorientation angle between adjacent dislocation cells is also plotted.
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that the effect of the CID on hardening can be significant
if the C parameter is high (Fig. 1). However, the CIDs
affect only large strain hardening, starting from an
equivalent strain of about 0.35, which is about the
beginning of stage IV hardening. The most appropriate
value for C is 0.1, where the predicted and experimental
strain hardening curves coincide. For C values larger
than about 0.3, the flow stress becomes too high with re-
spect to the experiment and the shape of the hardening
curve becomes unrealistic. The Kocks–Mecking plots
in Figure 2b clearly show that for C = 0 there is only
stage III, for C = 0.1 both stages are well reproduced,
while for C = 0.2 stage IV begins too early. C = 0.1
leads to a predicted CID density of qCID 2.0�1014 m�2

at the end of straining.
Turning to the predicted grain size and cell size

(Fig. 3), the refinement in grain size is significant,
decreasing to 1.19 lm from the initial 24 lm. This is in
good agreement with the measured value of
1.13 ± 0.08 lm. Compared to the changes in grain size,
the changes in dislocation cell size are less significant,
decreasing from 1.306 to 0.405 lm after one-pass ECAP.

The evolutions of the various predicted dislocation
densities are shown in Figure 4. There is a monotonic in-
crease in the dislocation densities as a function of strain
and, as expected, it is the cell wall dislocation density
that is the highest (its statistical part: qws). This variation
is remarkable for qc, qaverage and qCID. The average value
of the dislocation cell misorientation is also plotted in
Figure 4 (obtained from qwg as defined above) and
shows a two-stage aspect reaching a maximum value
of 1.41� after one-pass ECAP.

As mentioned above, the CID density is just one com-
ponent of the GND density: qGND ¼ qCID þ qwg. The
other component is the dislocation density associated
to the cell misorientations (qwg), which was also predicted
by the GR model. Its value at the end of straining was
3.0 � 1014 m�2 in the simulation. Thus, the predicted to-
tal GND density was 5.0�1014 m�2, which is close to the
measured GND value, which was 4.38�1014 m�2

(Fig. 1). A similar range for the variations of the GND
densities was reported in Ref. [20] for Al.

In conclusion, it is demonstrated in the present paper
that GNDs significantly affect stage IV, in agreement
with the findings of Pantleon [6,7], who used a different
approach. What is new in our approach is that the GND
density comes directly from a polycrystal plasticity grain
refinement model and that this density compares well to
experimental findings. It is also shown experimentally in
this work that the CID dislocations periodically group
into walls.
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