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Grain size distributions measured by electron backscatter diffraction are commonly
represented by histograms using either number or area fraction definitions. It is shown here
that they should be presented in forms of density distribution functions for direct quantitative
comparisons between different measurements. Here we make an interpretation of the
frequently seen parabolic tales of the area distributions of bimodal grain structures and a
transformation formula between the two distributions are given in this paper.
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1. Introduction and Definitions

Electron Backscatter Diffraction (EBSD) is a powerful tool to
studymicrostructures performing quantitative metallography
[1]. One of the most important characteristics of microstruc-
tures of polycrystalline materials is its grain size distribution.
The results of measurements are usually presented in
histograms where the number of grains with their diameter
Di lying in an interval δDi is counted as a function of grain size.
δDi is called a ‘bin’ and it is practical to chose the bin-size
constant, thus, in the following, the index i is only used to
identify a bin, it does not involve differences in size of the bin.
Two kinds of representations are currently in use for 2D
surfaces; the number fraction [2–4] and the area fraction
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definitions [5,6]. Even if applied for the same measurement,
the two representations are quite different.

The number-fraction distribution FN(Di) is defined by

Ni ¼ FN Dið ÞNtotal ð1Þ
where Ni is the number of grains in δDi and Ntotal is the total
number of grains. Similarly, the area fraction distribution
FA(Di) defines the sum of the areas Ai of grains that have their
diameter Di in the bin zone:

Ai ¼ FA Dið ÞAtotal: ð2Þ

Here Atotal is the total area occupied by the grain, it is equal
to the surface of themeasurement if all pixels belong to grains
in EBSD. It follows from the definitions above that the sum of
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the fraction-values added up for all the bins δDi is equal to one
(or 100% in percentage presentation):

Xn
i¼1

FN Dið Þ ¼ 1;
Xn
i¼1

FA Dið Þ ¼ 1: ð3a;bÞ

Here n is the total number of bins along the grains size axis.
Either using number-fraction or area-fraction distributions,

the values of FN(Di) and FA(Di) depend on the length of the
chosen bins δDiwhichmakes the results obtainedwith different
bin incompatible to each other so any quantitative comparison
of them is difficult. This incompatibility can be resolved by
using normalized density distribution functions for both types
of distributions:

f N Dið Þ ¼ FN Dið Þ
δDi

; f A Dið Þ ¼ FA Dið Þ
δDi

: ð4a;bÞ

fN(Di) and fA(Di) are called density distribution functions.
Then the following summations are satisfied:

Xn
i¼1

f N Dið ÞδDi ¼ 1;
Xn
i¼1

f A Dið ÞδDi ¼ 1: ð5a;bÞ

These density distribution functions can be continuous if
δDi → 0 and the summations in Eq. (5a,b) become integrals:

Zdmax

dmin

f N Dð ÞdD ¼ 1;
Zdmax

dmin

f A Dð ÞdD ¼ 1: ð6a;bÞ

The meaning of the number-fraction density fN(Di) and
area-fraction density fA(Di) distribution functions is as follows:

f N Dið ÞδDi ¼
Ni

Ntotal
; f A Dið ÞδDi ¼

Ai

Atotal
: ð7a;bÞ

The subject of the present work is to compare the two
kinds of functions, to give a transformation formula between
them and to explain a particular property of the area density
distribution usually observed for bimodal grain structures. An
experimental example is taken from EBSD maps measured
after dynamic recrystallization of a Mg alloy in torsion (AM30,
see more about the experiments in [7]).
2. Comparison of Number and Area-weighted
Density Distributions

Fig. 1 shows the microstructure of a Mg AM30 alloy obtained by
EBSD after torsion at 250 °C to a shear strain of 1.73 [7]. Due to
partial dynamic recrystallization, there is a large population of
small grains and another population of non-recrystallized grains
in the measurement. The grain size distribution is displayed in
Fig. 2 for both number and area density functions. The bimodal
nature of the distribution appears in the area density represen-
tation as a large peak at small grain sizes and a nearly uniform
distribution for grain sizes larger than about 10 μm (Fig. 2a). In
the number-density representation there is only one peak
because the small grains very much outnumber the large ones
(Fig. 2b). The advantage of showing the area density distribution
is clear for bimodal structures.
For larger grains the area-density distribution has some
interesting features because the intensity values are situated
along some parabolic functions. First we make a quantitative
description of these parabolic parts of the distribution. Let us
consider such bins in the measurement in which there are
the same number of grains denoted by n*. The smallest
number of n* is 0 for which case there is no vertical bar in the
histogram. For the case of area-density distribution, the total
surface area of the grains with diameter values lying in a
given bin can be approximated by using the equivalent circle
area method:

Ai≅
n�D2

i π
4

: ð8Þ

Here Di is the diameter value in the middle of the interval
δDi. Using this expression in Eq. (7a,b), we obtain the equation
of such specific distribution:

f n�A Dið Þ ¼ n� π
4AtotalδDi

D2
i : ð9Þ

fAn⁎ is the distribution function of those grains for which
there is the same number n* grain in a bin. As we can see, this
is a simple parabolic function. Fig. 2a displays fAn⁎ for
increasing value of n*. The large grain size part of fA can be
perfectly described by fAn⁎ for n* = 1, meaning that there is a
maximum of only one grain in a bin. For increasing value of n*
there are also several parts of fA which can be well described
by fAn⁎. Due to the nature of the construction of the histogram,
any value in the distribution corresponds to a certain n*, so the
whole distribution can be described by a set of fAn⁎ functions
with varying n*.

The function equivalent to fAn⁎ in the number-density
distribution is just a horizontal line defined by Ni = n* so we
obtain using Eq. (7a,b):

f n�N ¼ n�
NtotalδD

: ð10Þ

(Here the subscript i is dropped from δDi because δDi is
constant.) These horizontal lines are shown in the inset of
Fig. 2b for large grain sizes. The largest value of n* necessarily
corresponds to the maximum value for the fN distribution.
However, this is not the case for the fA distribution. The
position of the maximum n* in fA is obtained from Eq. (9):

n�
max ¼ max

4AtotalδDi f A Dið Þ
πD2

i

" #
: ð11Þ

The position corresponding to Eq. (11) is identified in Fig. 2a,
located atDi = 3.13 μmwith an nmax⁎ value of 1294. It is important
to know that the maximum value does not correspond to the
place which is most populated by the grains in an area-density
distribution.

The average grain size is an important information that
characterizes the microstructure. It is defined as follows:

DN ¼

Xn
i¼1

f N Dið ÞDiδDi

Xn
i¼1

f N Dið ÞδDi

¼
Xn
i¼1

f N Dið ÞDiδDi ¼
Xn
i¼1

FN Dið ÞDi; ð12Þ



Fig. 2 – Area (a) and number (b) weighted grain size density
distributions measured in Mg AM30 at 250 °C after a shear
of 1.73. The parabolas in (a) and the horizontal lines in
(b) correspond to a constant number of grains (n*) in the bins
of the histograms.

Fig. 1 – Inverse pole figure map of partially recrystallized Mg AM30 deformed at 250 °C to a shear of 1.73. Arrow indicates the
direction of shear.
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DA ¼

Xn
i¼1

f A Dið ÞDiδDi

Xn
i¼1

f A Dið ÞδDi

¼
Xn
i¼1

f A Dið ÞDiδDi ¼
Xn
i¼1

FA Dið ÞDi; ð13Þ

where Eqs. (5a,b) and (4a,b) were used. When a histogram is
constructed from the measurement, care has to be taken that
the trapezoidal integrals of fN(Di) as well as fA(Di) over thewhole
interval be 1, that is, the distribution functions have to be
normalized. There is no need for such normalization for
plotting FN(Di) or FA(Di). The average grain sizes obtained for
themeasurement in Fig. 2 are: DN ¼ 3:13 μm, andDA ¼ 20:1 μm.
The difference between the two averages is significant.

When grain size distributions are presented, some authors
use the number-weighted and others employ the area-
weighted distributions. As the experimental example demon-
strated above, they are not easily comparable. Therefore, it
is useful to have a transformation formula between the two
kinds of distributions. This formula can be obtained as
follows.

As in a bin δDi, corresponding to fN or fA, the number of
grains Ni is equal, using Eqs. (7a,b) and (8) with Ni in place of
n*, we obtain:

f A Dið Þ ¼ f N Dið ÞπNtotal

4Atotal
D2
i : ð14Þ

This relation permits to trace fA directly from fN as a
function of Di, or vice-versa. When fN(Di) is known but the
parameters in Eq. (14) are not all available, fA(Di) can still be
obtained from fN(Di) using Eq. (14) by employing arbitrary
values for the parameters (for example all equal to 1.0) and
normalize the obtained fA(Di)* distribution so that its trape-
zoidal integral as a function of Di and δDi equals to 1.



Fig. 4 – Comparison of number and area density functions
corresponding to the same lognormal distribution.
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3. Special Cases; the Uniform and Lognormal
Distributions

Finally, two special cases will be examined as particular
examples; the uniform and lognormal distributions.

For a uniform distribution fN = constant or fA = constant. The
value of the constant is the same and can be obtained from
the condition of unit integral over the whole span of grain
sizes (Eq. (6a,b) or (7a,b)): constant = 1/(Dmax − Dmin). However,
if one function is constant, the corresponding other function
is not. When fN = constant, using Eq. (14) we obtain for fA the
following expression:

f A Dð Þ ¼ 1
Dmax −Dmin

πNtotal

4Atotal
D2 ¼ 1

Dmax −Dmin

π
4
BD2; where B ¼ Ntotal

Atotal
:

ð15Þ

The B value defined by the Ntotal and Atotal quantities can be
determined by applying again the normalization criterion
(Eq. (6a,b)). After integrating, we obtain for fA and for its
maximum value:

f A ¼ 3
D3

max −D3
min

D2; f max
A ¼ 3D2

max

D3
max −D3

min

: ð16Þ

The second possibility is to take fA constant. Using again our
transformation formula (Eq. (14)) and the normalization proce-
dure in the way analogous to the preceding case, we obtain

f N ¼ DminDmax

Dmin −Dmaxð ÞD2 ; f max
N ¼ Dmax

Dmin −Dmaxð ÞDmin
: ð17Þ

The obtained functions are displayed in Fig. 3 for an example
where Dmin = 2 μm, Dmax = 20 μm. As can be seen, the ‘uniform’
distribution really depends on the choice of the distribution.
Whenone is uniform, the other is varying betweennearly 0 and a
high maximum intensity. Comparing the case when fA constant
to the case for fN constant, the variations obtained in the other
distribution are much larger when fA is constant because then fN
takes a very high maximum at the minimum grain size.
Fig. 3 – A comparison between number and area-weighted
density distributions when one of them is uniform
(the continuous line).
Lognormal distributions are known to describe grain size
distributions obtained by full recrystallization [8]. They are
described by the following density function:

f N ¼ 1
Dσ

ffiffiffiffiffiffi
2π

p exp
− lnD − μð Þ2

2σ2

" #
ð18Þ

where exp μ þ σ2

2

� �
is called themean, ande μ is themedian. Fig. 4

shows an example whenmean = 36 μm andmedian = 30 μm in
the expression of fN. The corresponding area-weighted distribu-
tion is alsodisplayed inFig. 4 constructedwith thehelpof Eq. (14).
In this case, the differences between the twodistributions are not
so dramatic as for all the previous cases examined above. For
example, the average grain sizes differ only by a factor of two.
4. Summary

In summary, an analysis has been carried out in the present
paper concerning some particular properties of grain size
distributions when they are presented in their number or
area-weighted versions. Particular attentionwasmade to bimod-
al grain structures, which was illustrated by a measurement on
torsion of a Mg AM30 partially recrystallized alloy. A quantitative
interpretation was given for the large strain part tales of the
area-weighted density functions which can be described by
parabolas that connect those points in the histogramwhich have
equal number of grains in their corresponding bins. A transfor-
mation formula was developed that can be readily applied to
convert an area or number density function into its correspond-
ing counterpart function. Finally, the uniform and lognormal
distributions were examined showing very specific features
when their number and area versions are compared.
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