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A coarse-grained extension of a recent nanoscale elasto-plastic model of polar dislocation and disclina-
tion density fields is developed to model grain boundary-mediated plasticity in polycrystals. At a small
resolution length scale, the polar dislocation/disclination densities render continuously the discontinu-
ities of the elastic displacements/rotations across grain boundaries. When the resolution length scale
increases, the net polarities of a crystal defect ensemble decrease, perhaps to the point where no
strain/curvature incompatibility is left in the body. The defect densities are then labeled ‘‘statistical’’.
However both polar and statistical dislocation/disclination densities contribute to plastic flow, and a
coarse-grained mesoscopic plastic curvature rate needs to be defined. In addition, whereas it is over-
looked at nanoscale where grain boundaries are seen as continua, tangential continuity of the elastic/-
plastic curvature/strain rates across grain boundaries needs to be considered at mesoscale, because the
latter are seen as singular discontinuity interfaces. It induces long-range, grain-to-grain, elastic/plastic
interactions across interfaces. The mesoscale model allow preserving the essential features of the lower
scale approach. In particular, it is shown that it allows accounting for such plastic deformation mecha-
nisms as grain boundary migration and grain boundary misorientation variation by disclination motion
and concurrent dislocation nucleation, when plasticity by dislocation glide is unavailable. Accumulation
of polar defect densities in the vicinity of the grain boundaries and triple lines, leading to long-range
inter-granular activation of slip and grain size effects, are also predicted by the model.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In polycrystals, grain boundaries (GBs) are thin regions where
the lattice rapidly changes its orientation within nanometers
(Sutton and Vitek, 1983; Priester, 2013; Fressengeas et al., 2014;
Cordier et al., 2014). GBs play a key role in the mechanical response
of polycrystals. They can strengthen the materials by limiting dis-
location glide within grains. Dislocation transmission or
re-emission from GBs do also lead to plastic flow, such that the role
of GBs in plasticity is not limited to being obstacles for dislocation
glide. In nanocrystalline materials or in slip-deprived materials,
GBs can also become important sources of plastic deformation.
Well-known examples of GB-mediated plasticity mechanisms are
GB migration (Gutkin and Ovid’ko, 2005; Farkas et al., 2006;
Cahn et al., 2006; Ovid’ko et al., 2008; Gorkaya et al., 2009;
Mompiou et al., 2009; Cordier et al., 2014), nucleation of disloca-
tions (Tschopp et al., 2007, 2008) followed by propagation in grains
(Van Swygenhoven et al., 2006, 2008; Bitzek et al., 2008).
Importantly, the elasto-plastic response of nanocrystalline materi-
als is strongly sensitive to the atomic structure of the GBs
(McDowell, 2008). For example, the atomic structural units and
associated excess free volumes (Tucker et al., 2010a) composing
the GBs (Sutton and Vitek, 1983) were shown to correlate with
both nucleation of dislocations at GBs (Tucker et al., 2010a) and
shear-coupled boundary migration (Cahn et al., 2006; Taupin
et al., 2014).

Several modeling approaches aimed at describing the mechan-
ical response of GBs and phase boundaries in relation with the
interface microstructure have been developed in the past (see
e.g. Bollmann, 1970; Pond and Hirth, 1994; Hirth and Pond,
1996; Hirth et al., 2006; Khater et al., 2012; Vattre et al., 2014).
In particular, elasto-static disclination-based approaches have
been proposed (Romanov and Kolesnikova, 2009; Romanov et al.,
2015; Li, 1972; Shih and Li, 1975; Gertsman et al., 1989), which
successfully complemented dislocation-based models and moti-
vated further investigation involving dissipative processes.
Indeed, in past work by the authors, a nanoscale structure sensitive
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model of GBs was proposed within the framework of an
elasto-plastic theory of disclination and dislocation fields
(Fressengeas et al., 2011). In this theory, based on seminal works
by Volterra (1907), Nye (1953), Mura (1963), deWit (1970),
Kröner (1980) and Acharya (2001), the polar disclination and dislo-
cation densities account in a continuous manner for the disconti-
nuities of the elastic/plastic rotation and displacement arising
across bounded surfaces in a crystalline material. These defect den-
sities induce incompatible elastic and plastic curvatures and
strains, leading to long-range internal stress and couple stress
fields. Their transport, driven by thermodynamically consistent
mechanical forces, provides their spatio-temporal dynamics and
yields plastic deformation (Fressengeas et al., 2011). This theory
was first used for continuous modeling of the core structure of
symmetric tilt boundaries in copper (Fressengeas et al., 2014)
and more complex boundaries in olivine (Cordier et al., 2014)
and fullerene monolayers (Bozhko et al., 2014). In these papers,
an atomistic to continuum crossover is realized by substituting
dipoles of wedge disclination densities to the structural units com-
posing the core of the GBs (Sutton and Vitek, 1983). A continuous
distribution of elastic energy in the GB core area is obtained from
the solution of the field equations, in good agreement with atomis-
tic simulations and experiments (Hasson et al., 1972; Tschopp
et al., 2008). Based on this structure of disclination dipoles,
shear-coupled boundary migration of symmetric tilt boundaries
in copper is also retrieved (Taupin et al., 2014), in agreement with
atomistic and experimental findings (Cahn et al., 2006; Gorkaya
et al., 2009). An essential outcome of the model is that, since the
discrete atomic structures are replaced by continuous defect den-
sities, the vibrations of atoms do not have to be resolved at the
femto-second time scale. Thus, time-coarsening is built-in, which
allows performing simulations over realistic time scales with strain
rate levels amounting to experimental values (Taupin et al., 2014),
while keeping essential features of GBs.

The objective of the present study is to provide a coarse-grained
extension of the above Field Dislocation and Disclination
Mechanics (FDDM) nanoscale framework that allows retaining
some of its key features at mesoscale, namely, the ability to
account for the structure of GBs in predicting the mechanical
response of polycrystalline media. Such an extension requires
addressing three fundamental challenges, all arising from the scale
dependence of the continuous measures of lattice incompatibility
in the presence of crystal defects. First, although the array of discli-
nation dipoles composing the GB structure at nanoscale is over-
looked when the resolution length scale is increased in the
coarse-graining process, recent measurements obtained from
EBSD orientation maps reveal the presence of dislocation and
disclination dipoles decorating GBs and triple lines at mesoscale
(Beausir and Fressengeas, 2013). Hence, a first challenge will be
to account for such mesoscale patterns of crystal defects and their
spatio-temporal evolution. Second, whereas GBs are seen as con-
tinua in the nanoscale FDDM framework, the mesoscale approach
promoted here will adopt an interfacial description of the GBs –
i.e. GBs of vanishingly small thickness. Hence, the second point to
be addressed in the present paper is the account of continuity con-
ditions at interfaces on the strain/curvature tensors, traction vector
and elastic/plastic strain/curvature tensors (Acharya, 2007;
Fressengeas et al., 2012), which allow retaining the nonlocal fea-
tures of the GBs that are essential to render the grain-to-grain
interactions and their consequences on plastic strain and orienta-
tion distributions (textures), and mechanical behavior. Third,
whereas the coarse-graining process leads to decreasing crystal
defect densities when the resolution length scale is increased, it
does not impact on the plastic distortion and curvature rates,
which do not follow this decreasing trend (Fressengeas et al.,
2012). As a result, mesoscale plastic distortion and curvature rates
statistically offsetting for the decreasing polar plastic distortion
and curvature rates need to be introduced in the averaging process,
in analogy with the work by Acharya and Roy (2006) in the pure
dislocation case. A finite element implementation of the proposed
phenomenological mesoscopic field disclination and dislocation
mechanics (PMFDDM) model will be developed, in order to show
illustrative examples and to evidence the predictive potential
brought by the model in mesoscale systems.

The paper is organized as follows. In Section 2, useful mathe-
matical notations are settled. In Section 3, the mesoscale extension
of the model is introduced. Essential points in this section are the
scale dependence of polar defect densities, the initial representa-
tion of GBs at mesoscale, and the implementation of tangential
continuity conditions on plastic distortion and curvature rates at
singular GB interfaces. The coarse-grain derivation of a mesoscale
statistical plastic curvature rate, an analysis of scale dependences
of the PMFDDM model as well as the ability of the latter to render
new GB-driven plastic mechanisms, are discussed in Section 4. In
Section 5, illustrative simulations of bicrystals and tricrystals are
presented to show the predictive capability of the model.
Conclusions follow.
2. Notations

A bold symbol denotes a tensor. When there may be ambiguity,

an arrow is superposed to represent a vector: ~V. The symmetric

part of tensor A is denoted Asym. Its skew-symmetric part is Askew.
The tensor A � B, with rectangular Cartesian components AikBkj,
results from the dot product of tensors A and B, and A� B is their
tensorial product, with components AijBkl. A: represents the trace
inner product of the two second order tensors A : B ¼ AijBij, in rect-
angular Cartesian components, or the product of a higher order
tensor with a second order tensor, e.g., A : B ¼ AijklBkl. The cross
product of a second-order tensor A and a vector V, the div and
curl operations for second-order tensors are defined row by row,
in analogy with the vectorial case. For any base vector ei of the ref-
erence frame:

ðA� VÞt � ei ¼ ðAt � eiÞ � V; ð1Þ
ðdivAÞt � ei ¼ divðAt � eiÞ; ð2Þ
ðcurlAÞt � ei ¼ curlðAt � eiÞ: ð3Þ

In rectangular Cartesian components:

ðA� VÞij ¼ ejklAikVl; ð4Þ
ðdivAÞi ¼ Aij;j; ð5Þ
ðcurlAÞij ¼ ejklAil;k: ð6Þ

where ejkl is a component of the third-order alternating Levi–Civita

tensor X. A vector ~A is associated with tensor A by using its trace
inner product with tensor X:

ð~AÞk ¼ �
1
2
ðA : XÞk ¼ �

1
2

eijkAij: ð7Þ

In the component representation, the spatial derivative with respect
to a Cartesian coordinate is indicated by a comma followed by the
component index. A superposed dot represents a material time
derivative. Finally, A½ � ¼ Aþ � A� denotes a jump or a discontinuity
of tensor A across an oriented interface.
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3. Mesoscale model of dislocation and disclination fields

3.1. Polar defect densities

The field theory of dislocations and disclinations is now briefly
recalled, the reader is referred to the paper by Fressengeas et al.
(2011) for a more comprehensive presentation. In a continuum
mechanics setting in the absence of cracks, the displacement vec-
tor field u is defined continuously at any point of an
elasto-plastic body. The total distortion tensor, defined as the gra-
dient of the displacement U ¼ gradu, is thus curl-free:

curl U ¼ 0: ð8Þ

In the presence of dislocation ensembles (Acharya, 2001), the plas-
tic, Up, and elastic, Ue, components of the distortion may contain
incompatible, non curl-free parts, U?p and U?e . Additional curl-free

compatible components, Uke and Ukp, allow satisfying the balance
of equilibrium and boundary conditions. The following relations
are therefore satisfied:

U ¼ Ue þ Up; ð9Þ

Ue ¼ U?e þ Uke; ð10Þ

Up ¼ U?p þ Ukp; ð11Þ

0 ¼ U?e þ U?p ; ð12Þ

curl U?e ¼ �curl U?p ¼ a – 0: ð13Þ

Eq. (13) are satisfied by the incompatible plastic distortion U?p asso-
ciated with the presence of Nye’s polar dislocation density tensor a

(Nye, 1953), and by the incompatible elastic distortion U?e ensuring
the continuity of matter implied by Eq. (8). The polar dislocation
density can be used to represent the core of a single or partial dis-
location as well as an ensemble of dislocations with non-zero net
Burgers vector. Since Uke and Ukp are curl-free, Eq. (13) can also be
written as:

curl Ue ¼ �curl Up ¼ a: ð14Þ

By decomposing the elastic and plastic distortions into their sym-
metric and skew-symmetric parts, Eq. (14) can alternatively be
expressed as (deWit, 1970; Fressengeas et al., 2011):

curl �e ¼ þaþ jt
e � trðjeÞI; ð15Þ

curl �p ¼ �aþ jt
p � trðjpÞI: ð16Þ

Eqs. (15) and (16) relate the incompatibilities in elastic strain �e and
plastic strain �p arising from the presence of Nye’s dislocation den-
sity tensor a, and the elastic, je, and plastic curvature, jp. In an
elasto-plastic model considering solely dislocations, the elastic,
plastic and total, j, curvature tensors are rotation gradients:

je ¼ grad ~xe; ð17Þ

jp ¼ grad ~xp; ð18Þ

grad ~x ¼ j ¼ je þ jp: ð19Þ

Hence, the elastic and plastic curvatures are curl-free and the asso-
ciated rotation vectors ð ~xe; ~xpÞ are integrable single-valued quanti-
ties. The sum of the elastic and plastic rotation vectors is the
material rotation vector ~x ¼ 1

2 curl u. As shown by deWit (1970),
(je;jp) may not be curl-free anymore, if the possibility of
multi-valued elastic and plastic rotations ~xe and ~xp, i:e:, a
discontinuity of the elastic and plastic rotations over some surface,
is acknowledged. In such a situation, a non-zero tensor h such that

h ¼ �curl jp ¼ curl je ð20Þ

can be defined. h is the polar disclination density tensor (deWit,
1970). Similarly to the case of dislocations, the incompatible part
of the plastic curvature tensor due to a polar disclination density
is offset by the incompatible part of the elastic curvature tensor
in order to ensure the continuity of matter. Since the rotation vec-
tors ð ~xe; ~xpÞ are multi-valued in the presence of disclinations, the
corresponding elastic and plastic rotation and distortion tensors
are undefined. The discontinuity of the elastic rotation is the
Frank vector. It is obtained by integrating the incompatible elastic
curvatures along a closed circuit C:

X ¼
Z

C
je � dr: ð21Þ

Similarly, the discontinuity of the elastic displacement is the
Burgers vector. It contains a possible contribution from the
non-uniformity of elastic curvatures and reads (deWit, 1970):

b ¼
Z

C
ð�e � ðjt

e � rÞtÞ � dr: ð22Þ

If S is the surface of unit normal n bounded by circuit C, using
Stokes’s theorem and Eqs. (15) and (20) allows rewriting Eqs. (21)
and (22) as:

X ¼
Z

S
h � ndS; ð23Þ

b ¼
Z

S
ða� ðht � rÞtÞ � ndS: ð24Þ

X and b defined above are point-wise measures of the lattice
incompatibility in the presence of disclinations and dislocations.
In contrast, the disclination and dislocation densities h and a
defined in Eqs. (15) and (20) are continuous tensorial renditions
of this incompatibility. They provide a natural regularization of
the singular and discontinuous nature of the Frank/Burgers vectors
and they are thus appropriate mathematical tools to model the core
of crystal defects in a fully continuous fashion.

3.2. Scale dependence of polar defect densities

Eqs. (21)–(24) reveal the circuit size/resolution length scale
dependence of the Burgers and Frank vectors and of the corre-
sponding polar defect densities. Given a prescribed ensemble of
crystal defects, the Burgers/Frank vectors directly depend on the
choice of surface S and on the characteristic size of circuit C. If this
size is chosen in the nm scale or less, every defect (or part of a
defect) can be resolved by a polar defect density, and a complete
description of the incompatible elastic strains and curvatures asso-
ciated with this defect configuration is obtained. For example, con-
sidering as in Fig. 1 a dipole of dislocations/disclinations of
opposite magnitudes, and adopting a small circuit C allows captur-
ing the Burgers/Frank vector of each individual defect and describ-
ing the dipoles with defect densities of opposite signs. Hence, the
incompatibility induced by the dipoles is fully captured by the
polar defect density field. In contrast, if a mesoscale resolution is
chosen, such that the circuit encompasses all defects, then the
net polarity of the defect ensemble may reduce or even cancel
out. For instance, if one increases circuit C in Fig. 1 to the point
where it fully encompasses the dipole, the net Burgers/Frank vec-
tors vanish, as well as the corresponding polar dislocation/disloca-
tion densities. In this extreme case, the incompatibility induced by
the dipoles is missed by the representation.



Fig. 1. Scale dependence of polar defect densities and plastic flow. Example of the expansion of an edge dislocation dipole (left) and a wedge disclination dipole (right). At a
small nanoscale resolution sketched by the orange Burgers and Frank circuits, each dislocation/disclination can be rendered by a polar dislocation/disclination density. In that
case, the plastic strain/curvature rate produced by the expansion of a dislocation/disclination dipole with velocity v can be rendered by the mobility of polar dislocation/
disclination densities (terms surrounded by orange lines). At a higher mesoscale resolution sketched by the green circuits, the polarities of the dislocation/disclination dipole
‘‘statistically’’ offset, resulting in a statistical dislocation/disclination density. In that case, the plastic strain/curvature rate produced by the expansion of the dislocation/
disclination dipole cannot be resolved by the mobility of polar dislocation/disclination densities and must be accounted for by a statistical rate term (terms surrounded by
green lines). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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3.3. Scale dependent representation of grain boundaries

When modeling symmetric tilt GBs with nanoscale resolution,
dipoles of polar disclination densities are used to continuously rep-
resent the atomic structural units composing GBs (Fressengeas
et al., 2014). As per discussion in the above, this construct does
not apply at mesoscale resolution, as the net polar disclination
density may vanish. From this standpoint, the need for using polar
disclination densities may appear as limited at mesoscale.
However, even at such a scale, recent estimates from electron
back-scattered diffraction (EBSD) orientation maps with
sub-micron resolution evidenced the presence of polar disclination
dipoles along GBs (Beausir and Fressengeas, 2013). Clearly, these
density fields do not render the individual crystal defects constitut-
ing the grain boundary structure at nanoscale, but rather the net
polarity of ensembles of defects resulting from misorientation gra-
dients at mesoscale along the GBs.

Motivated by these observations, we propose to follow the
methodology already used in EBSD orientation mapping to build
the fields of incompatibility that will render initial grain bound-
aries at mesoscale. Interestingly, this allows employing experimen-
tal orientation maps to build initial conditions for the crystal defect
density fields. Using the Bunge convention, the local lattice orien-
tation is characterized by the set of Euler angles ð/1;/;/2Þ and the
associated sample-to-crystal rotation matrix R. The disorientation
between two points (in EBSD, two pixels) a and b in the body is
given by the couple ðr;DwÞ, where r is the axis of rotation and
Dw the disorientation angle around r. In the Cartesian coordinate
system with the sample reference frame ðe1; e2; e3Þ, the difference
of elastic rigid body rotation vector Dxe between points a and b
satisfies:

Dwr ¼ Dxe
i ei: ð25Þ

If Ra and Rb denote the rotation matrices at points a and b, the dis-
orientation matrix from point a to b can be calculated as
DR ¼ R�1

a :Rb. Then, the variation of the elastic rotation Dxe
i is

obtained from (Pantleon, 2008):

Dxe
i ¼ �

eijkDRjkDw
2sinðDwÞ : ð26Þ

As a final step, the elastic curvature tensor component je
ij is approx-

imated by the variation of the elastic rigid body rotation Dxe
i over a

distance Dxj:
je
ij ¼

Dxe
i

Dxj
: ð27Þ

The initial polar disclination density associated with this elastic cur-
vature field is then given by Eq. (20) h ¼ curl je. Overlooking the
curl of elastic strain tensor at the initial time and using Eq. (15),
the initial polar dislocation density associated with elastic curva-
tures is approximately given by:

a ¼ �jt
e þ trðjeÞI: ð28Þ

Because the incompatible elastic strain in Eq. (15) is unknown from
orientation mapping, a fraction of the dislocation density is clearly
overlooked. Fig. 2 depicts the geometry of micron-sized bicrystal
and tricrystal configurations, together with their initial dislocation
and disclination density fields. Fig. 2(a) shows the initial edge dislo-
cation density field associated with a tilt boundary in a bicrystal, as
obtained from Eqs. (26)–(28). Because periodic boundary conditions
are used along the directions of the GB plane, the polar disclination
density field is uniformly zero. Fig. 2(b) and (c) show the initial field
for the norm of the polar dislocation and disclination density ten-
sors in a tricrystal with three GBs that have each both tilt and twist
components, as obtained from Eqs. (20), (26), (27) and (28). Walls of
edge and screw polar dislocations are found in the GBs, whereas
wedge and twist polar disclinations are observed at the triple line.
Disclinations are also present at the intersection of the GBs and
external surfaces, in order to terminate GB dislocation walls. The
polar defect densities obtained in these simple bicrystal and tricrys-
tal configurations are in good agreement with those observed in
EBSD orientation maps (Beausir and Fressengeas, 2013).

To verify consistency of the predictions, the polar dislocation
density obtained for the tilt boundary shown in Fig. 2(a) is now
explained. The edge polar dislocation density a13 obtained follows
from Eqs. (27) and (28). The jump of lattice orientation Dxe

3 across
the GB of normal e1 results in a bending elastic curvature
je

31 ¼ Dxe
3=Dx1, which in turns give rise to an edge dislocation den-

sity field a13. Remembering that aij ¼ bitj, where bi is the areal den-
sity of Burgers vector along direction ei and tj is the component of
line vector along ej, the component a13 obtained for this tilt bound-
ary renders a wall of edge dislocations with straight lines along the
tilt axis direction and with Burgers perpendicular to the grain
boundary. This is in agreement with the conventional interpreta-
tion of tilt boundaries as arrays of edge dislocations. We note that
the Burgers vector associated with this mesoscale edge polar



Fig. 2. Initial polar defect densities in mesoscale bicrystals and tricrystals, as estimated from crystal lattice orientations. (a) Edge dislocation density a13 (in rad lm�1) in a
20 � 5 � 5 lm3 bicrystal with a tilt misorientation of 25� around e3 axis. Periodic boundary conditions are assumed along the GB plane ðe2; e3Þ. (b) Norm of the dislocation
density tensor (in rad lm�1) in a 15 � 15 � 10 lm3 tricrystal. The orientation of the three grains are randomly generated such that the grain boundaries have both tilt and
twist components. c: norm of the disclination density tensor (in rad lm�2) in the same tricrystal.

V. Taupin et al. / International Journal of Solids and Structures 71 (2015) 277–290 281
dislocation density field is equivalent to that induced by the wedge
disclination dipole structure of this same tilt boundary at nanos-
cale. Hence, the vectorial characteristics of the incompatibility is
conserved through the length scales.

3.4. Grain boundaries viewed as interfaces

As already mentionned, the mesocale description of the GBs
cannot account for their core structure because they are viewed
as a singular interfaces where the field variables may encounter
discontinuities. However the jumps of the elastic/plastic strain
and cuvature tensor fields across the interface cannot be arbitrary
for the consistency of the continuum theory. As recalled below,
tangential continuity conditions on the elastic/plastic strain and
curvature tensor fields must be satisfied in a framework based
on non-singular disclination and dislocation density fields
(Acharya, 2007; Fressengeas et al., 2012). Fig. 3 represents a closed
circuit C crossing two grains, separated by a singular GB interface
(I) of unit normal n at point P. l and t ¼ n� l are unit vectors
belonging to the interface, forming an orthonormal basis with n.
Fig. 3. Mathematical setup used to derive tangential continuity conditions at
singular grain boundary interfaces (Acharya, 2007; Fressengeas et al., 2012). Two
grains are delimited by a singular GB interface ðIÞ of unit normal n at point P. The
unit vectors l and n � l belong to the GB plane. A closed circuit C crosses both grains
and the GB.
We assume the existence of continuous polar defect densities
ðh;aÞ in both grains and, provisionally, possible surface (singular)
defect densities (hSðIÞ;aSðIÞ) lying in the interface. The Frank and
Burgers vectors associated with circuit C can be obtained from
Eqs. (21) and (22). When collapsing circuit C onto point P in the
interface, Eqs. (21) and (22) become (Fressengeas et al., 2012):

je½ � � l ¼ hSðIÞ � t; ð29Þ

�e � je � r0½ � � l ¼ ðaSðIÞ � hSðIÞ � r0Þ � t; ð30Þ

The above equations can be seen as generalized Frank–Bilby inter-
facial relations applied to both dislocations and disclinations
(Frank, 1950; Bilby, 1955). Eq. (29) means that any tangential dis-
continuity of elastic curvature across the interface can be accommo-
dated by a singular surface disclination density hSðIÞ lying in the
interface. Similarly, Eq. (30) means that any tangential discontinuity
of the elastic strain across the interface, including a possible contri-
bution of elastic curvatures and surface disclinations, can be accom-
modated by a singular surface dislocation density aSðIÞ lying in the
interface. When disclinations are overlooked, the latter relation
reduces to:

Ue½ � � l ¼ aSðIÞ � t; ð31Þ

which means that any tangential discontinuity of the elastic distor-
tion across the interface can be accommodated by a singular surface
dislocation density aSðIÞ lying in the interface (Acharya, 2007). If
modeling choices are such that surface defect densities are not
allowed, for consistency of the continuous framework, Eqs. (29)
and (30) reduce to (Fressengeas et al., 2012):

je½ � � l ¼ 0; ð32Þ

�e � je � r0½ � � l ¼ 0: ð33Þ

Eqs. (32) and (33) imply tangential continuity of the elastic curva-
ture and strain tensors across the interface. Similar continuity con-
ditions also apply to the plastic curvature and strain tensors, and
the plastic curvature rate and strain rate tensors. Through the limits
imposed to the accommodation of discontinuities, non-locality of
elasto-plasticity is induced across the interface. The characteristic
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length scale of such non-locality is extremely small. Nevertheless, it
has a strong impact on the plastic strain rate and rotation rate fields
in the vicinity of the grain boundaries, and it allows retrieving size
effects on plasticity, loading path-dependency and directional hard-
ening in particle-reinforced alloys, as well as texture peculiarities
due to grain interactions (Mach et al., 2010; Richeton et al., 2011;
Puri et al., 2011; Taupin et al., 2012). In the forthcoming simula-
tions, we thus propose to investigate further the effects of the inter-
facial tangential continuity conditions on the predictions of the
mesoscale model, in terms of polar defect density distributions at
grain boundaries and triple lines, plasticity, material hardening
and size effects.

3.5. Elasticity

In the absence of body forces, the momentum and moment of
momentum equations reduce to (Mindlin and Tiersten, 1962;
Taupin et al., 2014):

div Tsym þ 1
2

curl div Mdev ¼ 0: ð34Þ

In the above, Tsym and Mdev denote the symmetric Cauchy stress ten-
sor and the deviatoric part of the couple stress tensor, respectively.
A specific free energy density function w containing contributions
from elastic strains and curvatures is now introduced as follows:

w ¼ wð�e;jeÞ: ð35Þ

For a quadratic expansion of the latter, the elastic constitutive rela-

tions for Tsym and Mdev are derived in the linear form:

Tsym ¼ C : �e þ D : je; ð36Þ

Mdev ¼ A : je þ B : �e; ð37Þ

where the B and D tensors of elastic constants are non-zero only in
defected areas (Upadhyay et al., 2013). Hence, they will be consid-
ered as null at mesoscale. Homogeneous and isotropic elasticity is
assumed for C and the couple stress tensor is taken in the form

Mdev ¼ nlb2jdev
e , where l and b denote the shear modulus and

the magnitude of the Burgers vector, respectively. n is a
non-dimensional parameter whose value and scale dependence will
be discussed in the following.

3.6. Plasticity and scale dependence

To derive a mesoscale measure of plasticity by dislocation glide,
we use a space–time running average of the nano-scale plastic
strain rate tensor:

_�p ¼ ða� VaÞsym
; ð38Þ

where Va denotes the velocity of an infinitesimal part of a disloca-
tion. With provisional overbars for the mesoscopic averages, we
obtain:

_�p ¼ ða� Va þ LpÞ
sym
; ð39Þ

where Lp is defined as

Lp ¼ ða� �aÞ � Va ¼ a� Va � �a� �Va: ð40Þ

Hence, Lp represents a part of the average plastic distortion rate
produced by the nanoscale dislocation density. It can be
non-vanishing when �a ¼ 0 and, as such, is to be interpreted as the
plastic distortion rate produced by the so-called statistical disloca-
tions (Acharya and Roy, 2006). Clearly, the velocity �Va is a space–
time average of the point-wise, nanoscale dislocation velocities
Va. �Va and Lp are terms that require constitutive specification, to
be provided below. Dropping the overbars, the polar dislocation
densities are set into motion by the driving force:

Fa ¼ b� b � a
jaj

� �
a
jaj ; ð41Þ

where b ¼ Tsym:a : X and a ¼ 1
3 Tkka : X. The dislocation velocity is

then related to the driving force Fa by assuming a mobility law
ensuring positiveness of the dissipation. The following power law
form:

Va
l ¼ va

0
TVM

T0

 !na
Fa

l

jFaj
ð42Þ

is often used. In this expression, ðva
0; T0Þ are reference velocity and

stress values respectively. TVM denotes the Von Mises stress. Eq.
(42) reflects a thermally activated mechanism for high values of
the exponent na and viscous mechanisms when na � 0. The rela-
tionship (41) and (42) is sufficient to ensure incompressibility of
plastic straining, by forbidding out of plane motion of edge disloca-
tions, such as climb or cross-slip, whereas the motion of screw dis-
locations remains unrestricted (Fressengeas et al., 2011). In crystal
plasticity, Lp is the conventional plastic slip rate tensor, which
reads:

Lp ¼
X

s

_cp
s ms � ns ¼

X
s

_cp
s Ps; ð43Þ

if _cp
s is the plastic slip rate on slip plane s of slip direction ms and

normal ns. Ps is the orientation Schmid tensor. Plastic slip on system
s is activated by the resolved shear stress ss ¼ T : Ps through the
relation:

_cp
s ¼ _cp

0ðjss=s0jÞn
a
signðssÞ; ð44Þ

where _cp
0; s0 and n are the reference plastic strain rate, shear stress

and power law exponent, respectively. Well established standard
crystal plasticity representations are therefore included in the pre-
sent mesoscale model.

In a similar manner, using space–time running averages of the
nanoscale disclination density tensor, disclination velocity Vh and
plastic curvature rate tensor _jp, allows writing the mesoscopic
plastic curvature rate as:

_jp ¼ h� Vh ¼ h� Vh þ _j	p: ð45Þ

The mesoscopic plastic curvature rate _jp may be non-zero when the
net polarity of a disclination ensemble vanishes at mesoscale:
ðh ¼ 0Þ, as for instance in the large circuit shown in Fig. 1(b). In such
as case, it becomes:

_jp ¼ h� Vh ¼ _j	p: ð46Þ

Dropping the overbars, it will be written as:

_jp ¼ h� Vh þ _j	p: ð47Þ

We refer to _j	p as the statistical plastic curvature rate. Like Vh, it
requires constitutive specification, to be provided below and in
the next section. Eq. (47) accounts for plasticity processes in rela-
tion with the mobility of disclinations, which cannot be described
by a pure dislocation-based model. Such processes include the
relaxation of elastic curvatures by grain boundary misorientation
variation following the motion of GB disclination densities and
the concurrent nucleation of GB dislocation densities. Note here
that a plastic curvature rate similar to _j	p was proposed by
Romanov and Vladimirov (1992) to account for the relaxation of
couple stresses by GB rotation.

The motion of polar disclination densities is driven by a
Peach-Köhler-type force Fh, which writes (Fressengeas et al., 2011):
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Fh ¼Mt � h : X; Fh
l ¼ ejklMijhik: ð48Þ

We propose that the disclination velocity be related to this driving
force by the following power law relationship:

Vh
l ¼ vh

0
MVM

M0

 !nh
Fh

l

jFhj
; ð49Þ

in analogy with Eq. (42). In the above expression, (vh
0;M0) are refer-

ence velocity and couple stress values, respectively. MVM denotes
the Von Mises couple stress. The exponent nh reflects thermally
activated mechanisms for high values and viscous mechanisms for
nh � 0. It is not necessarily equal to na.

When considering statistical plastic strain and curvature rates
at mesoscale, the transport equations for polar defect densities
(Fressengeas et al., 2011) read:

_h ¼ �curlðh� Vh þ _j	pÞ; ð50Þ

_a ¼ �curlða� Va þ LpÞsym þ _jt
p � trð _jpÞI: ð51Þ

The above equations are of the form:

_h ¼ �curlðh� VhÞ þ sj
h ; ð52Þ

_a ¼ �curlða� VaÞsym þ s�a þ sj
a : ð53Þ

where the disclination and dislocation sink/source terms sj
h and

(sj
a ; s

�
a) are evidenced. Incompatibility of the plastic curvature rate

at grain boundaries and triple nodes is expected to generate polar
disclination densities h through the term sj

h in Eq. (52).
Interestingly, this disclination sink/source term is not present in
the nanoscale version of the model (FDDM), where only a disloca-
tion sink/source term arises from the motion of the existing discli-
nations. Concurrently, plastic curvature rates and incompatibility in
the plastic slip rate tensor generate polar dislocation densities a
through the terms sj

a and s�a in Eq. (53), respectively. The terms sj
a

and sj
h provide new disclination-mediated plastic relaxation mech-

anisms for grain boundaries, such as dislocation nucleation or
absorption (Tschopp et al., 2007; Van Swygenhoven et al., 2006),
emergence of disclination lines at triple/quadruple junctions
(Rösner et al., 2011), that the pure dislocation version of the model
can not render. The predictive capability brought by such sink/-
source terms will be investigated in the next section.

4. Mesoscale plastic curvature rate, scale dependence and
disclination-mediated GB mechanisms

4.1. Expression for the statistical plastic curvature rate

In this subsection, we aim at deriving an expression of the sta-
tistical plastic curvature rate _j	p as the average over a mesoscopic
volume element of the nanoscale polarized plastic curvature rate
_jp ¼ h� Vh (see Eq. (46)). In component form, the latter writes:

_jp
ij ¼

1
Bh ejklepqlMrphrqhik; ð54Þ

where, using Eq. (49), Bh denotes the drag coefficient:

Bh ¼ jF
hj

vh
0

M0

MVM

� �nh

: ð55Þ

Some manipulations allow rewriting Eq. (54) as:

_jp
ij ¼

1
Bh hikðht

klMlj �Mt
klhljÞ; _jp ¼ 1

Bh h � ðht �M� h �MtÞ: ð56Þ

Now, breaking hij ¼ Xitj into the Frank vectors around axis ei per
unit surface, Xi, and the component of disclination line along direc-
tion ej; tj, Eq. (56) can be written in the form:
_jp ¼ Ph : M; Ph
ijkl ¼

1
Bh XiXkðdjl � tjtlÞ: ð57Þ

In Eq. (57), Ph contains information on the crystallography of grain
boundaries in terms of disclinations, as well as on mobility of the
latter. Such information is important as it directly controls the capa-
bility of grain boundaries to relax elastic curvatures. Future work on
this model includes determination of Ph as a function of grain
boundary nature, material, temperature etc. Using Eq. (55) for the
drag coefficient Bh, we obtain the statistical plastic curvature rate
as:

_jp	
ij ¼

1
V

Z
V

vh
0

jFhj
MVM

M0

 !nh

XiXkðdjl � tjtlÞMkldV : ð58Þ

Assuming V to be large enough to contain a statistical distribution
of the Frank vector and disclination line orientations, we reduce this
expression to:

_jp	
ij ¼

1
V

Z
V

vh
0

jFhj
MVM

M0

 !nh

g2X2dikdjlMkldV ; ð59Þ

where X is a characteristic Frank vector and g a non-dimensional
parameter, and finally obtain:

_jp	
ij ¼

1
V

Z
V

_jp
0ðM

VM=M0Þ
nh

ðMdev
ij =MVMÞdV : ð60Þ

For the sake of simplicity, _jp
0 ¼ g2X2vh

0MVM=jFhj ¼ qXvh
0 is taken as

a constant. qX represents a statistical disclination density in units
of a characteristic Frank vector times a length of disclination line
per unit volume (rad m�2). Note the similarity of this relationship
with the conventional Orowan’s law for the plastic strain rate
resulting from a statistically distributed ensemble of dislocations.
Invoking the mean value theorem, the mesoscale plastic curvature
rate is finally approximated as follows:

_j	p ¼ _jp
0ðM

VM=M0Þ
nh

ðMdev=MVMÞ: ð61Þ

Identification of constitutive parameters and scale dependences in
the statistical plastic curvature rate (61) is performed in the next
subsection.

4.2. Scale dependence of curvatures and constitutive parameters

In the presence of a discontinuity of the elastic/plastic rotation
at a GB interface, the elastic/plastic curvatures across the interface
are scale dependent, meaning that their values depend on the
choice of the resolution length scale. Clearly, they are inversely
proportional to the resolution length scale. Hence, the question
arises as to what should be the scale dependence of the constitu-
tive parameters to ensure the conservation through the resolution
length scales of the GB energy and dissipated energy in a
GB-mediated plasticity process. Put differently, we look for scaling
laws such that the GB elastic energy and GB-mediated plasticity
mechanisms modeled smoothly at nanoscale via fields of polar
disclination densities, be rendered consistently at mesoscale when
using sharp interfaces and curvatures defined in an averaged sense.
To illustrate this point, we simulate the bending of a bicrystal con-
taining a symmetric tilt boundary with various resolution length
scales, as shown in Fig. 4. The configuration of the bicrystal is
sketched at the top of the figure. The tilt axis is perpendicular to
the figure and the tilt angle is indicated by two dashed lines. A typ-
ical high angle h001iR5ð310Þ tilt boundary of misorientation 36:9�

is considered. The mechanical behavior of each crystal is taken as
purely elastic. In addition the crystals are dislocation free, so that
any plastic distortion of the bicrystal is produced via GB mechan-
ims. A constant and uniform bending curvature is then applied to



Fig. 4. Bending of a bicrystal containing a symmetric tilt GB. The configuration of the bicrystal is shown on top. The two crystals are supposed purely elastic and do not
contain any defect. The tilt boundary rotation axis is perpendicular to the figure and the GB is represented by its atomic structure featuring structural units. The GB
misorientation is indicated by the two dashed lines. A constant and uniform bending curvature is applied to the bicrystal, such that the left and right external surfaces are at a
10� angle. Results from simulations of this configuration at nanoscale with FDDM (Case 1a) and FDM (Case 2a) and at mesoscopic scale with PMFDDM (Case 1b) and PMFDM
(Case 2b) are sketched below. See the main text for explanations.
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the bicrystal, such that the left and right external surfaces are at an
angle of 10�.

We first perform a reference simulation at nanoscale (Case 1a),
as sketched in Fig. 4(1a). In this simulation, FDDM is used. The sim-
ulation parameters are listed in Table 1. The resolution length
scale, i.e. the mesh size in the finite element simulation, is
l0 ¼ 0:1 nm, a value taken as reference. The structural units com-
posing the tilt boundary at nanoscale are modeled smoothly via
dipoles of wedge disclination densities, as done in previous work
(Fressengeas et al., 2014). The corresponding initial energy of the
GB (excess energy per unit length of GB) is Egbðl0Þ ¼ 1 J=m2. This
value will be used as a reference in the following. The following
mechanism, referred to as grain boundary misorientation variation
throughout the present paper, is predicted by the model. Due to
the internal elastic fields of the GB disclinations and the imposed
bending, strong elastic curvatures exist in the
disclination-populated areas along the GB. Their conjugate couple
stresses drive the motion of disclinations, as implied by Eqs. (48)
and (49). Negative disclinations move up along the boundary
plane. From Eqs. (47) and (53), such disclination motion generates
positive plastic curvatures and leaves positive polar GB edge dislo-
cations in their wake. The Burgers vector of the generated edge dis-
location densities is perpendicular to the GB plane and their line is
Table 1
Numerical constants used and measured in the reference bending simulations with
FDDM.

nh;a _jp
0ðl0Þ je

0ðl0Þ T0 va
0

10 109 rad m�1 s�1 109 rad m�1 1 GPa 0:1 nm=s

vh
0 E m nðl0Þ l0

0:1 nm=s 62:780 GPa 0.3647 10�10 0:1 nm
normal to the figure. As a consequence of the generated plastic cur-
vatures and associated dislocation densities, the strong elastic cur-
vatures in the GB area are relaxed and the GB misorientation
decreases by a 10� angle, as suggested by the dashed lines in the
figure. Hence, this process can be described as a GB misorientation
variation mediated by GB disclination motion and accompanied by
GB dislocation nucleation. Thus, in contrast with previous generic
considerations on disclinations (Kleman and Friedel, 2008), the
crystal is not seen as ‘‘suffering’’ from the motion of disclinations,
but rather as being relaxed in this dissipative process. Moreover,
the so-called relaxation dislocations (Kleman and Friedel, 2008)
produced by the motion of disclinations do not need to move away
from the GB. The energy dissipated per unit GB length in reducing
the misorientation is calculated as:

Ed ¼
1

LGB

Z
t

Z
V

T : _�p þM : _jp
� �

dV
� �

dt: ð62Þ

It is found to be Edðl0Þ � 0:2 J=m2, which clearly amounts to 20% of
the initial GB energy. This value will also be used as a reference for
the energy dissipated by the change of misorientation of the tilt
boundary in what follows. Other reference parameters to be identi-
fied from this simulation are M0ðl0Þ and _jp

0ðl0Þ. _jp
0ðl0Þ is estimated

from the plastic curvature variation due to disclination mobility,
divided by the time during which bending is applied. It is found
to be _jp

0ðl0Þ ¼ 109 rad m�1 s�1. The reference couple stress is of the

form M0ðl0Þ ¼ nðl0Þlb2je
0ðl0Þ, where nðl0Þ is the value of the couple

stress coefficient in the elastic law Mdev ¼ nlb2jdev
e at resolution

length scale l0. As suggested above, this coefficient must be scale
dependent. Its reference value will be nðl0Þ ¼ 10�10 as further
detailed below. je

0ðl0Þ reflects a characteristic elastic misorientation
over the reference resolution length scale, estimated from the initial



Fig. 5. Log–log plot as a function of resolution length scale l of couple stress
elasticity coefficient n, reference plastic curvature rate _jp

0, energy dissipated during
GB misorientation change Ed , reference elastic curvature je

0 and initial GB energy
Egb . Results are normalized by values at reference resolution length scale l0.
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values of the elastic curvatures within the boundary area. The value
je

0ðl0Þ ¼ 109 rad=m is retained.
We now proceed with simulations at larger resolution length

scales l, from the reference scale l0 up to micron size (Case 1b
shown in Fig. 4(1b)). In these simulations, the mesoscopic exten-
sion of the FDDM model (to be referred to as PMFDDM:
Phenomenological Mesoscale FDDM) is used to model the same
bending experiment. As already indicated, we aim at producing
results that are consistent with those obtained in Case 1a, by using
the mesoscopic plastic curvature rate _j	p. The objective is to cali-
brate the constitutive parameters such that the mesoscopic model
quantitatively retrieves the reference GB energy, as well as the
misorientation change and the reference energy dissipated in the
process. The characteristic resolution length scale (i.e. the mesh
size) used in the finite element simulations is denoted by l. It
was varied from 0.1 nm up to 1 lm. As aforementioned, the initial
GB is not rendered by smooth wedge disclinations in these mesos-
cale simulations, but by a polar edge dislocation density, as implied
by Eq. (31). As shown in Fig. 4, the initial tilt boundary supports a
uniform wall of negative edge dislocation density with Burgers
vector normal to the boundary plane. At nanoscale, where the core
structure of GBs is fully captured by wedge disclination dipoles, the
initial GB energy is due almost exclusively to elastic strains
(Fressengeas et al., 2014). At mesoscale however, where the core
structure is overlooked, the initial energy Egb of the GB arises solely
from the elastic curvatures and their couple stress conjugates. For
the smallest resolution length scale tested ðl ¼ 0:1nm ¼ l0Þ, we cal-
ibrate the coefficient n ¼ nðl0Þ entering the couple stress elasticity
law to ensure that the GB energy equals the reference value
obtained with FDDM in Case 1a. The value nðl0Þ ¼ 10�10 is found.
Now, we increase l to find the scale dependence of nðlÞ such that
the GB energy remains scale independent. We find that nðlÞ and
thus the couple stresses should follow the quadratic dependence:

nðlÞ ¼ nðl0Þ
l
l0

� �2

; MdevðlÞ ¼ nðl0Þ
l
l0

� �2

lb2jdev
e : ð63Þ

As suggested above, this result derives from the scale dependence of
the elastic curvatures. Since the jump in elastic/plastic rotation
across the interface is invariant when the resolution length scale l
is changed, je

0ðlÞ and _jp
0ðlÞ follow a 1=l scaling law:

je
0ðlÞ ¼ je

0ðl0Þ
l0

l
; _jp

0ðlÞ ¼ _jp
0ðl0Þ

l0

l
: ð64Þ

With the identified constitutive parameters and scaling laws, bend-
ing simulations are now performed by using the mesoscale model
PMFDDM. Due to the applied couple stresses, the statistical plastic
curvature rate _j	p generates uniform positive plastic curvatures and
positive edge dislocation densities in the interface. Therefore the
initial negative dislocation density decreases, as sketched in Fig. 4.
Hence, similarly to Case 1a, the GB misorientation decreases, actu-
ally by an amount of 6�, in rather good agreement with the refer-
ence simulation using nanoscale smooth FDDM in Case 1a. In
addition, the energy dissipated during this plastic relaxation pro-
cess is found to be Ed ¼ 0:125 J=m2, also close to the reference value
of Case 1a. Simulations at different scale resolutions l show that the
dissipated energy is scale independent. All the above results on
scale-dependence in the mesoscale bending simulations with
PMFDDM are summarized in Fig. 5.

4.3. Disclination vs. dislocation-mediated plasticity at grain
boundaries

In this Section, the intent is to show that the pure dislocation
version of our model (no disclinations) cannot render mechanisms
such as the GB misorientation variation presented in the above
subsection, in order to make clear that the mesoscale term _j	p
effectively adds new plasticity mechanisms to more conventional
models relying only on dislocation glide. To this end, two different
simulations were performed, which are sketched in Fig. 4(2a) and
(2b). In the Case 2a, FDM (Field Dislocation Mechanics) was used to
model the tilt boundary at nanoscale with resolution length
l ¼ l0 ¼ 0:1 nm. In this case, each atomic structural unit is modeled
by a negative edge polar dislocation density spot, with Burgers vec-
tor perpendicular to the GB plane and line vector parallel to the tilt
axis. If climb is allowed, the edge dislocation can move up or down
along the GB, depending on whether they are located in a region of
tension or compression. However, such motion does not relax the
bending curvatures and the GB misorientation is quasi-invariant.
In Case 2b, the tilt boundary is modeled at micron scale
ðl ¼ 1 lmÞ using PMFDM. Here, as in PMFDDM simulations, the ini-
tial GB is composed of a uniform wall of negative edge polar dislo-
cation density. Transport of the polar dislocation density by climb
is also possible, as in Case 1a, but no plastic curvature is produced
and the GB misorientation does not change. To summarize, our
simulations clearly show that disclination motion provides uncon-
ventional plastic relaxation mechanisms at GBs, such as GB misori-
entation variation accompanied by GB dislocation nucleation, that
cannot be rendered by dislocation models. Further, these mecha-
nisms can be described by both nanoscale and mesoscale
disclination-based models.
5. Mesoscale simulations of bicrystals and tricrystals

5.1. Simulation details

In this section, illustrative applications of the PMFDDM
approach are presented. Aluminum bi- and tri-crystals are used
as supporting configurations. The intent is to probe the impact of
the tangential continuity conditions on elastic/plastic strain/curva-
ture and strain/curvature rates at the interfaces on the mechanical
response of these structures. A particular focus will be on the influ-
ence of these tangential continuity conditions on the sample size
dependence of the mechanical response. Further, the coupled con-
tributions of polar and statistical defect densities to bulk vs. GB
mediated plasticity will be examined, together with the role of tri-
ple lines and temperature.

To this end, the field equations of the mesoscale model pre-
sented in Sections 3 and 4 are solved approximately by using the
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finite element method. The open source software FreeFem++ is
used (Hecht et al., 2014). The tangential continuity conditions
(32) and (33) are imposed by spreading the GB interface over a
finite element (with small but non-zero width), which regularizes
the discontinuity. Adding a penalty term to the transport Eqs. (50)
and (51) allows ensuring that the nucleation of polar defect densi-
ties corresponding to tangential discontinuity does not occur.
Then, by correcting the incompatible elastic–plastic strains and
curvatures from Eqs. (15) and (20), tangential discontinuity is
effectively removed and relations (32) and (33) are satisfied. The
material constants representative of pure aluminum are used. For
the sake of simplicity, no work hardening is implemented.
Parameters used for the dislocation crystal plasticity formulation
are _cp

0 ¼ 10�7 s�1 and s0 ¼ 10 MPa. Other parameters are already
listed in Table 1.
5.2. Non-local impact of tangential continuity on plasticity

Fig. 6(a) and (b) displays the polar dislocation density and ten-
sile plastic strain generated during tensile deformation of the
tricrystal shown in Fig. 2 when the tangential continuity conditions
are not imposed. A 1% tensile strain �33 is applied along the direc-
tion of the triple line, with constant quasi-static applied strain rate.
The tensile plastic strain exhibits discontinuities across the GBs. It
is quasi-uniform within the grains, and there does not seem to be
any grain-to-grain elasto-plastic interaction across the GBs. As a
consequence of tangential discontinuity of the plastic straining,
the polar dislocation density that is generated is localized in the
GB interfaces, as can be seen in Fig. 6(a). Conversely, Fig. 6(c) and
(d) shows the results predicted for the same tricrystal when the
tangential continuity conditions are imposed. Continuity of the
tensile plastic strain, grain-to-grain elasto-plastic interactions
and a re-distribution of the plastic strain rate between grains are
now seen to occur across the GBs. The grain where the plastic
strain was the lowest in the absence of the continuity conditions,
now has the largest plastic strain. As shown in Fig. 6(c), this is
due to polar dislocation densities piling up at GBs in the neighbor-
ing grains, which produces internal stresses leading to intergranu-
lar transfer of plastic deformation. Note in Fig. 6(c) the
concomitant absence of interface dislocations. Fig. 7 shows the
macroscopic tension–compression curves corresponding to the
deformation of the tricrystal, with and without tangential
Fig. 6. Tensile deformation of the 15 � 15 � 10 lm3 tricrystal shown in Fig. 2, without
along the triple line direction and the applied strain rate is 10�5 s�1. (a), (c) Slice showin
deformation. (b), (d) Slice showing the tensile plastic strain at the end of loading.
continuity conditions. The accumulation of polar dislocations at
grain boundaries and the grain-to-grain interactions predicted
when the tangential continuity conditions are activated lead to
more pronounced Bauschinger effect, and particularly to transient
elasto-plastic behavior during load reversal.

Additionnally, the polar disclination densities generated during
plastic deformation of the tricrystal, with and without tangential
continuity conditions, are shown in Fig. 8. Without tangential con-
tinuity, most of the disclination density is localized within the tri-
ple line. When continuity conditions are imposed, the disclination
density is not restricted anymore to the triple line, but rather accu-
mulated along the triple line and the GBs. As for dislocation densi-
ties, tangential continuity of the elastic curvatures tends to remove
interface disclinations, in favor of more heterogeneous distribu-
tions within grains, near triple line and GBs. It also leads to
grain-to-grain interactions of elastic curvatures. Such non-local
behavior is expected to generate considerable kinematic hardening
in situations involving strong elastic curvatures, such as high accu-
mulation of dislocations at grain boundaries at large strains, and
bending or torsion solicitations. One should again note that the
nucleation of polar disclination densities within grains and along
interfaces stems from the presence of the statistical plastic curva-
ture rate introduced in the above section. The latter is also a source
or sink of dislocations in Eq. (51). As aforementioned, a careful val-
idation of this statistical term is needed in future work to quantify
its impact on the deformation of polycrystals.

5.3. Long-range and size effects induced by tangential continuity

Fig. 9 now illustrates the effects of sample and grain size
induced by the tangential continuity conditions on the distribution
of plastic strain in a bicrystal and the mechanical behavior of the
latter. In a first step, a reference bicrystal composed of two grains
of width H ¼ 5 lm and length L ¼ 5:5 lm with a symetric tilt
boundary of misorientation 10�, is deformed in simple tension to
a strain of 10% along the e3 axis. The prefactor _cp

0 in the plastic slip
rate is divided by a factor 10 in the right hand side grain in order to
mimic lower dislocation activity in that grain, and to promote dif-
ferences in the plastic strain across the GB. Fig. 9(a) depicts the ten-
sile plastic strain field �p

33 by the end of the tension process if
tangential continuity of the plastic strain and curvature tensors is
not required. �p

33 is seen to be uniform within the grains, while a
(a), (b) and with (c), (d) tangential continuity conditions. The applied strain is 0.01
g the norm of the dislocation density tensor (in rad lm�1) generated during plastic



Fig. 7. Tension–compression macroscopic stress–strain curves for the tricrystal shown in Fig. 6. Tension and compression are applied along the triple line direction. (a) Curves
obtained with na ¼ nh ¼ 10, with (red line) and without (blue line) interface tangential continuity conditions. (b) Curves obtained with na ¼ nh ¼ 2, with (purple line) and
without (green line) interface tangential continuity conditions. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of
this article.)

Fig. 8. Compression of a tricrystal, without (a) and with (b) interface tangential continuity conditions. The applied strain is �10% along the triple line direction and the
applied strain rate is �10�5 s�1. (a), (b) Color contours showing the norm of the disclination density tensor (in rad lm�2) generated during plastic deformation. The norm of
the dislocation density tensor generated along the process is shown in gray scale (in rad lm�1).
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discontinuity in �p
33 shows up across the GB. The configuration of

the bicrystal is actually such that tangential continuity of the plas-
tic strain at the interface requires that �p

33 be continuous across the
interface. This is indeed verified in Fig. 9(b), obtained from calcula-
tions where tangential continuity is implemented. In addition,
polar dislocation pile-ups build-up at the GB, and slip transfer
across GB takes place, similar to that previously shown in Fig. 6.
The width of the bicrystal is now doubled from H ¼ 5 lm to
2H ¼ 10 lm, while its length L ¼ 5:5 lm is kept constant. The
resulting tensile plastic strain field is shown in Fig. 9(c), with tan-
gential continuity still implemented. As compared to Fig. 9(b), it is
seen that the heterogeneity of the plastic strain is enhanced,
because the amount of GB area is increased. The role of the dislo-
cation pile-ups in slip transfer is also promoted. As a result, more
plastic strain is produced in the hard grain on the right. Finally,
while maintaining the width of the grains equal to 2H ¼ 10 lm
and keeping tangential continuity in place, their length is now
increased to 2L ¼ 11 lm. The resulting plastic strain field is shown
in Fig. 9(d). As compared to Fig. 9(c), it is seen that the effect of slip
transfer progressively decreases as one moves away from the GB,
while the influence of the boundary conditions on this region
decreases. This clearly shows the non-local and long-range charac-
ter of the effects of tangential continuity on the plastic strain field.
The impact of the above changes in size on the stress–strain curves
of the bicrystal are shown in Fig. 9(e). For the grains with dimen-
sion 2H ¼ 10 lm and L ¼ 5:5 lm, slip transfer is effective in almost
all parts of the hard grain, including the vicinity of the external
boundaries. Hence, the Bauschinger effect and transient elastoplas-
tic transition during strain reversal are increased. For the grains
with dimension 2H ¼ 10 lm and 2L ¼ 11 lm, slip transfer is less
effective away from the GB. Hence, the Bauschinger effect and
transient elastoplastic transition during strain reversal are less pro-
nounced. Importantly, it is to be noted that changing the dimen-
sions of the bicrystal does not have any effect on the plastic
strain field and the overall mechanical response when the tangen-
tial continuity conditions are not imposed.
5.4. GB vs. dislocation mediated plasticity

We now look for the predictive capabilities of the model in
terms of dislocation vs. GB mediated plasticity. Fig. 10 shows the
shear deformation of a 20 � 1 � 1 lm3 bicrystal with a 25� h001i
symmetric tilt boundary supporting the appropriate edge disloca-
tion density field. Dislocation glide within grains is possibly pre-
vented by arbitrarily setting _cp

0 ¼ 0 in the plastic slip rate tensor.
Periodic boundary conditions are assumed along the two directions
defining the GB plane. Simple shear with constant quasi-static
applied strain rate is imposed on the external surfaces parallel to
the GB plane. Unsurprisingly, the imposed shear is accommodated
by intragranular plastic shear when _cp

0 – 0, as can be seen in
Fig. 10(b), where the residual strain after loading removal is
shown. If instead intragranular dislocation glide is not permitted:
_cp

0 ¼ 0, the bicrystal behaves elastically until the applied shear
stress reaches a critical value where transport of the edge disloca-
tion density decorating the tilt boundary takes place. Accordingly,
Fig. 10(c) depicts the occurrence of shear-coupled boundary migra-
tion. Further, Fig. 11 shows the predicted shear-coupling factor



Fig. 9. Grain size effects during tension–compression of a bicrystal. (a) Reference
bicrystal of dimension H ¼ 5 lm and L ¼ 5:5 lm, deformed to a 10% strain in simple
tension along e3 axis (green z axis in the figure), without tangential continuity
conditions. The applied strain rate is 10�5 s�1. The misorientation of the symetric
tilt GB is 10� around the e3 axis. The prefactor _cp

0 ¼ 0 in the plastic slip rate tensor is
divided by a factor 10 in the right grain in order to mimic lower dislocation activity
in that grain. (b) Same bicrystal than that shown in a, but tangential continuity
conditions are imposed. (c) Same bicrystal than that shown in a, but its width is
increased from H ¼ 5 lm to 2H ¼ 10 lm and tangential continuity conditions are
imposed. (d) Same bicrystal than that shown in a, but its width is increased from
H ¼ 5 lm to 2H ¼ 10 lm, the length of grains are increased from L ¼ 5:5 lm to
2L ¼ 11 lm and tangential continuity conditions are imposed. In (a,b,c,d), the
tensile plastic strain is color-coded. (e) Corresponding stress/strain curves of the
bicrystal. Without continuity conditions, changing H and/or L yields the same
macroscopic curve without any size effect. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Shear deformation of a 20 � 1 � 1 lm3 bicrystal with tilt misorientation of
25� , the tilt axis e3 is normal to the figure. Periodic boundary conditions are
assumed along the GB plane ðe1; e3Þ. (a) Initial edge dislocation density a13 (in
rad lm�1) composing the tilt GB. (b) Edge dislocation density a13 (in rad lm�1) in
the same bicrystal deformed by a 15% shear strain. (c) The two crystals are made
purely elastic by setting _cp

0 ¼ 0 in the plastic slip rate. In that case, the 15% applied
shear strain is accommodated by the motion of the edge dislocation density a13 (in
rad lm�1), leading to shear-coupled boundary migration. In (b), (c), the deformed
shape after removal of the applied shear strain is shown to evidence the residual
shear strain in the bicrystal.
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when the tilt angle is varied by appropriately choosing the initial
GB dislocation density. The experimentally observed positive and
negative branches (Gorkaya et al., 2009) are retrieved. The switch
between the branches is predicted at a 45� tilt, due to cubic sym-
metry reasons, whereas the actual value is 37�, as predicted by
the nanoscale FDDM model (Taupin et al., 2014) and observed in
experiments (Gorkaya et al., 2009). Despite their mesoscale charac-
ter, which prevents from recovering fine scale features, these
results compare favorably with the experimental values. The pre-
dicted critical shear stress for boundary migration is also shown
in Fig. 11 as a function of the misorientation. It is seen to be high
at low angles and conversely low at high angles, consistent with
the elastic energy and dislocation content of these boundaries.
Indeed, if a constant critical driving force is assumed at all misori-
entations, Eqs. (41) and (42) show that the higher the GB disloca-
tion density is taken, the lower the shear stress becomes.
5.5. Effect of triple lines and temperature on GB-mediated plasticity

Finally, Fig. 12 shows GB-mediated plasticity in a tricrystal con-
figuration. Again, intragranular slip is prevented by setting _cp

0 ¼ 0
in the plastic slip rate. Periodic boundary conditions are imposed
along the triple line direction. The GBs are of tilt/twist character
and simple shear is applied on the external surfaces, both along
and normal to the triple line direction, in order to activate glide
of both the edge and screw polar dislocation densities present in
the GBs. The applied strain rates are constant and quasi-static.
An initial edge dislocation component of the boundaries is shown
in Fig. 12(a). Because of the mixed character of the GBs and the
presence of a triple line and free surfaces close to the GBs, the
defect dynamics is much more complex than in the bicrystal
shown in Fig. 10(c). In particular, it can be seen in Fig. 12(b) that
boundary migration is hindered by the presence of the triple line.
As a result the applied shear is accommodated by local variations
in GB misorientation associated with the nucleation of GB edge
and screw dislocations and with their eventual emission in grain
interiors. For instance, one of the GBs in Fig. 12(b), essentially of tilt
character, encounters a 60% decrease of its tilt angle (a reduction of
about 15�), while dislocation emission into a neighbor grain inte-
rior is clearly in evidence. The same tricrystal configuration is
Fig. 11. Shear-coupling factor of h001i tilt boundaries, as predicted by the
mesoscale model. Diamonds show the predicted shear-coupling factors, for
misorientations ranging from 0 up to 90� . Two positive and negative branches are
obtained with a switch at 45� due to cubic symmetry. The two dotted lines
represent the two branches obtained experimentally with a switch at 37� (Gorkaya
et al., 2009). Squares show the predicted critical shear stress (MPa) for the onset of
boundary migration, as a function of misorientation.



Fig. 12. Deformation of a 15 � 15 � 1 lm3 tricrystal with three grain boundaries that have each both tilt and twist components. The three grains are made purely elastic by
setting _cp

0 ¼ 0 in the plastic slip rate tensor. Periodic boundary conditions are assumed along the triple line direction. (a) Initial edge dislocation density a13 (in rad lm�1)
decorating part of the grain boundaries. (b) Evolution of the dislocation density a13 (in rad lm�1) when a 15% shear strain is applied normal and along the triple line direction,
with na ¼ nh ¼ 10. The triple line and grain boundaries are almost motionless. The upper GB has accommodated deformation by emitting edge dislocations to its right and by
consequently decreasing its tilt misorientation by 60% locally. (c) Evolution of the dislocation density a13 (in rad lm�1) when a 15% shear strain is applied normal and along
the triple line direction, with na ¼ nh ¼ 1. A 15% tensile strain is also applied normal to the triple line to promote out-of-plane motion of polar edge dislocations. Climb and
glide of edge dislocations are treated on an equal footing. In that case, the triple line and grain boundaries migrate to accommodate deformation.
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looked at in Fig. 12(c) when additional tension is applied along a
direction normal to the triple line, in order to favor climb of edge
dislocations. In addition, the power law exponents are set to
na ¼ nh ¼ 1 in the mobility laws (42) and (49), in order to mimic
viscous motion of defects at high temperature. Climb of edge dislo-
cations is also allowed. As can be seen in Fig. 12(c), GB migration is
substituted to the grain boundary misorientation variation mecha-
nism and to dislocation nucleation and emission. To summarize,
these simulations suggest that viscosity and dislocation climb tend
to favor GB migration, whereas GB misorientation variations and
dislocation nucleation and emission tend to prevail when the
strength of the obstacles increases.

6. Conclusions

In the present paper, a mesoscale extension of a previously
developped elasto-plastic theory of dislocation and disclination
fields has been introduced. The approach is useful in polycrys-
talline materials where plasticity by dislocation glide is limited,
either because the average grain size becomes too small, as in
ultrafine-grained materials, or because the material does not have
enough independent slip systems, as in orthorhombic olivine.
Motivated by recent experimental results (Beausir and
Fressengeas, 2013), where mesoscale disclination dipoles were
found to decorate GBs and triple lines, the tensorial densities of
crystal defects (dislocations and disclinations) are used to render
continuously the initial structure of the GBs and triple lines.
Their transport provides the framework for the dynamics of the
GBs and triple lines. Consistency of the latter in the
coarse-graining process requires introducing a statistical plastic
curvature rate tensor, whose role is to reproduce GB-mediated
plasticity at mesoscale. Appended with tangential continuity con-
ditions on the plastic strain and curvature rate tensors at GBs,
the theory offers a nonlocal description of the plasticity of poly-
crystals. Nonlocality arises at GBs and triple lines, and has
long-range character. Predicted consequences of non-locality
include the occurrence of pile-ups of dislocation densities at GBs
and activation of slip across GBs, interactions between neighbor
grains, sample and grain size effects on mechanical behavior, ani-
sotropy of hardening induced by the loading process (‘‘kinematic’’
or directional hardening), GB migration and misorientation varia-
tion accompanied with dislocation nucleation and emission,etc.
Standard crystal plasticity is included in the theory as a limiting
case, when the crystal defect density fields and the statistical plas-
tic curvature rate vanish and when the tangential continuity con-
ditions on the plastic strain and curvature rate tensors are
overlooked at GBs. The above nonlocal features are naturally
obtained by the theory, without introducing any adhoc phe-
nomenological term. As a challenge for future work, the approach
has in particular the capacity for predicting the influence of grain
size on the work hardening of polycrystals, as a function of temper-
ature and strain rate.

Acknowledgements

The authors benefited of financial support from the ANR
(Agence Nationale de la Recherche) under Grant
ANR-11-JS09-007-01, NanoMec. The authors would like to thank
A. J. Beaudoin, S. Forest and R. Lebensohn for helpful discussions.

References

Acharya, A., 2001. J. Mech. Phys. Solids 49, 761.
Acharya, A., 2007. Philos. Mag. 87, 1349.
Acharya, A., Roy, A., 2006. J. Mech. Phys. Solids 54, 1687.
Beausir, B., Fressengeas, C., 2013. Int. J. Solids. Struct. 50, 137–146.
Bozhko, S.I., Taupin, V., Lebyodkin, M., Fressengeas, C., Levchenko, E.A., Radikan, K.,

Lübben, O., Semenov, V.N., Shvets, I.V., 2014. Phys. Rev. B 90, 214106.
Bilby, B.A., 1955. In: Bristol Conference Report on Defects in Crystalline Solids, The

Physical Society, London, 124.
Bitzek, E., Derlet, P.M., Anderson, P.M., Van Swygenhoven, H., 2008. Acta Mater. 56,

4846.
Bollmann, W., 1970. Crystal Defects and Crystalline Interfaces. Springer-Verlag.
Cahn, J.W., Mishin, Y., Suzuki, A., 2006. Acta Mater. 54, 4953.
Cordier, P., Demouchy, S., Beausir, B., Taupin, V., Barou, F., Fressengeas, C., 2014.

Nature 507, 51–56.
deWit, R., 1970. In: Simmons, J.A., deWit, R., Bullough, R. (Eds.), Fundamental

Aspects of Dislocation Model, vol. I. Nat. Bur. Stand. (US), Spec. Publ. 317, pp.
651–673.

Farkas, D., Froseth, A., Van Swygenhoven, H., 2006. Scr. Mater. 55, 695–698.
Frank, F.C., 1950. In: Symposium on The Plastic Deformation of Crystalline Solids,

Mellon Institute, Pittsburgh, (NAVEXOS-P-834), p. 150.
Fressengeas, C., Taupin, V., Capolungo, L., 2011. Int. J. Solids Struct. 48, 3499.
Fressengeas, C., Acharya, A., Beaudoin, A.J., 2011. In: Ghosh, S., Dimiduk, D. (Eds.),

Computational Methods for Microstructure-Property Relationships. Springer,
pp. 277–309.

http://refhub.elsevier.com/S0020-7683(15)00295-4/h0005
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0010
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0015
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0020
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0025
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0025
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0035
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0035
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0040
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0045
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0050
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0050
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0055
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0055
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0055
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0060
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0070
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0075
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0075
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0075


290 V. Taupin et al. / International Journal of Solids and Structures 71 (2015) 277–290
Fressengeas, C., Taupin, V., Capolungo, L., Upadhyay, M., 2012. Int. J. Solids Struct.
49, 2660.

Fressengeas, C., Taupin, V., Capolungo, L., 2014. Int. J. Solids Struct. 51, 1434.
Gorkaya, T., Molodov, D.A., Gottstein, G., 2009. Acta Mater. 57, 5396.
Gutkin, M.Yu., Ovid’ko, I.A., 2005. Appl. Phys. Lett. 87, 251916.
Hasson, G., Boos, J.Y., Herbeuval, I., Biscondi, M., Goux, C., 1972. Surf. Sci. 31, 115.
Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuka, K., 2014. freefem++. <www.freefem.

org/ff++/>.
Hirth, J.P., Pond, R.C., 1996. Acta Mater. 44, 4749.
Hirth, J.P., Pond, R.C., Lothe, J., 2006. Acta Mater. 54, 4237.
Khater, H.A., Serra, A., Pond, R.C., Hirth, J.P., 2012. Acta Mater. 60, 2007–2020.
Kleman, M., Friedel, J., 2008. Rev. Mod. Phys. 80, 61.
Kröner, E., 1980. In: Balian, R. et al. (Eds.), Phys. Defects. North Holland, Amsterdam,

pp. 218–314.
Li, J.C.M., 1972. Surf. Sci. 31, 12.
Mach, J., Beaudoin, A.J., Acharya, A., 2010. J. Mech. Phys. Solids 58, 105.
McDowell, D.L., 2008. Mater. Sci. Eng. R 62, 67.
Mindlin, R.D., Tiersten, H.F., 1962. Arch. Ration. Mech. Anal. 11, 415.
Mompiou, F., Caillard, D., Legros, M., 2009. Acta Mater. 57, 2198.
Mura, T., 1963. Philos. Mag. 89, 843.
Nye, J.F., 1953. Acta Metall. 1, 153.
Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C., 2008. Acta Mater. 56, 2718.
Pantleon, W., 2008. Scr. Mater. 58, 994.
Pond, R.C., Hirth, J.P., 1994. Solid State Phys. 47, 287.
Priester, L., 2013. Grain boundaries, from model to engineering. Springer Series in

Material Science, vol. 172, 2013.
Puri, S., Das, A., Acharya, A., 2011. J. Mech. Phys. Solids 59, 2400.
Richeton, T., Wang, G.F., Fressengeas, C., 2011. J. Mech. Phys. Solids 59, 2023.
Romanov, A.E., Vladimirov, V.I., 1992. In: Nabarro, F.R.N. (Ed.), Dislocations in Solids,

vol. 9. Elsevier, Amsterdam, p. 191.
Romanov, A.E., Kolesnikova, A.L., 2009. Prog. Mater. Sci. 54, 740.
Romanov, A.E., Kolesnikova, A.L., Orlova, T.S., Hussainova, I., Bougrov, V.E., Valiev,

R.Z., 2015. Carbon 81, 223.
Rösner, H., Kübel, C., Ivanisenko, Y., Kurmanaeva, L., Divinski, S.V., Peterlechner, M.,

Wilde, G., 2011. Acta Mater. 59, 7380.
Shih, K.K., Li, J.C.M., 1975. Surf. Sci. 50, 109.
Sutton, A.P., Vitek, V., 1983. Philos. Trans. R. Soc. London A309, 1.
Taupin, V., Capolungo, L., Fressengeas, C., 2014. Int. J. Plasticity 53, 179.
Taupin, V., Berbenni, S., Fressengeas, C., 2012. Acta Mater. 60, 664.
Tschopp, M.A., Tucker, G.J., McDowell, D.L., 2007. Acta Mater. 55, 3959.
Tschopp, M.A., Spearot, D.E., McDowell, D.L., 2008. In: Hirth, J.P. (Ed.), Dislocations

in Solids, vol. 14, p. 43.
Tucker, G.J., Tschopp, M.A., McDowell, D.L., 2010a. Acta Mater. 58, 6464.
Upadhyay, M., Capolungo, L., Taupin, V., Fressengeas, C., 2013. Philos. Mag. 93, 794.
Van Swygenhoven, H., Derlet, P.M., Froseth, A.G., 2006. Acta Mater. 54, 1975.
Van Swygenhoven, H., 2008. Mater. Sci. Eng. A 483–484, 33.
Vattre, A.J., Abdolrahim, N., Kolluri, K., Demkowicz, M.J., 2014. Nat. Sci. Rep. 4

(6231), 1–7.
Volterra, V., 1907. Ann. Sci. Ecol. Norm. Supp. III (24), 401–517.
Gertsman, V.Yu., Nazarov, A.A., Romanov, A.E., Valiev, R.Z., Vladimirov, V.I., 1989.

Philos. Mag. A 59, 1113.

http://refhub.elsevier.com/S0020-7683(15)00295-4/h0080
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0080
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0085
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0090
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0095
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0100
http://www.freefem.org/ff++/
http://www.freefem.org/ff++/
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0110
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0115
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0120
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0125
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0130
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0130
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0135
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0140
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0145
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0150
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0155
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0160
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0165
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0170
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0175
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0180
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0190
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0195
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0200
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0200
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0205
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0210
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0210
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0215
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0215
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0225
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0230
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0235
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0240
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0250
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0260
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0275
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0280
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0285
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0295
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0295
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0300
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0310
http://refhub.elsevier.com/S0020-7683(15)00295-4/h0310

	A mesoscopic theory of dislocation and disclination fields for grain boundary-mediated crystal plasticity
	1 Introduction
	2 Notations
	3 Mesoscale model of dislocation and disclination fields
	3.1 Polar defect densities
	3.2 Scale dependence of polar defect densities
	3.3 Scale dependent representation of grain boundaries
	3.4 Grain boundaries viewed as interfaces
	3.5 Elasticity
	3.6 Plasticity and scale dependence

	4 Mesoscale plastic curvature rate, scale dependence and disclination-mediated GB mechanisms
	4.1 Expression for the statistical plastic curvature rate
	4.2 Scale dependence of curvatures and constitutive parameters
	4.3 Disclination vs. dislocation-mediated plasticity at grain boundaries

	5 Mesoscale simulations of bicrystals and tricrystals
	5.1 Simulation details
	5.2 Non-local impact of tangential continuity on plasticity
	5.3 Long-range and size effects induced by tangential continuity
	5.4 GB vs. dislocation mediated plasticity
	5.5 Effect of triple lines and temperature on GB-mediated plasticity

	6 Conclusions
	Acknowledgements
	References


